An approach to explainable deep learning using fuzzy inference

被引:22
|
作者
Bonanno, David [1 ]
Nock, Kristen [1 ]
Smith, Leslie [1 ]
Elmore, Paul [2 ]
Petry, Fred [2 ]
机构
[1] US Navy, Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] US Navy, Res Lab, 1005 Balch Blvd, Stennis Space Ctr, MS 39529 USA
来源
NEXT-GENERATION ANALYST V | 2017年 / 10207卷
关键词
Deep Learning; Explainable AI; Fuzzy Inference; Sensor Fusion; ANFIS;
D O I
10.1117/12.2268001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning has proven to be an effective method for making highly accurate predictions from complex data sources. Convolutional neural networks continue to dominate image classification problems and recursive neural networks have proven their utility in caption generation and language translations. While these approaches are powerful, they do not offer explanation for how the output is generated. Without understanding how deep learning arrives at a solution there is no guarantee that these networks will transition from controlled laboratory environments to fieldable systems. This paper presents an approach for incorporating such rule based methodology into neural networks by embedding fuzzy inference systems into deep learning networks.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Traffic prediction in SDN for explainable QoS using deep learning approach
    Wassie, Getahun
    Ding, Jianguo
    Wondie, Yihenew
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [2] Traffic prediction in SDN for explainable QoS using deep learning approach
    Getahun Wassie
    Jianguo Ding
    Yihenew Wondie
    [J]. Scientific Reports, 13 (1)
  • [3] Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI
    Chatterjee, Joyjit
    Dethlefs, Nina
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [4] An Approach to Federated Learning of Explainable Fuzzy Regression Models
    Barcena, Jose Luis Corcuera
    Ducange, Pietro
    Ercolani, Alessio
    Marcelloni, Francesco
    Renda, Alessandro
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [5] An Explainable Mental Health Fuzzy Deep Active Learning Technique
    Ahmed, Usman
    Lin, Jerry Chun-Wei
    Tomasiello, Stefania
    Srivastava, Gautam
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [6] Spatiotemporal analysis using deep learning and fuzzy inference for evaluating broiler activities
    Chang, Chung-Liang
    Xie, Bo-Xuan
    Xu, Rui-Yi
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [7] An Explainable Deep Learning Approach for Adaptation Space Reduction
    Diallo, Alhassan Boner
    Nakagawa, Hiroyuki
    Tsuchiya, Tatsuhiro
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2020), 2020, : 230 - 231
  • [8] An Explainable Deep Learning Approach for Oral Cancer Detection
    P. Ashok Babu
    Anjani Kumar Rai
    Janjhyam Venkata Naga Ramesh
    A. Nithyasri
    S. Sangeetha
    Pravin R. Kshirsagar
    A. Rajendran
    A. Rajaram
    S. Dilipkumar
    [J]. Journal of Electrical Engineering & Technology, 2024, 19 : 1837 - 1848
  • [9] An Explainable Deep Learning Approach for Oral Cancer Detection
    Babu, P. Ashok
    Rai, Anjani Kumar
    Ramesh, Janjhyam Venkata Naga
    Nithyasri, A.
    Sangeetha, S.
    Kshirsagar, Pravin R.
    Rajendran, A.
    Rajaram, A.
    Dilipkumar, S.
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (03) : 1837 - 1848
  • [10] An Explainable Deep Learning Approach for Oral Cancer Detection
    Babu, P. Ashok
    Rai, Anjani Kumar
    Ramesh, Janjhyam Venkata Naga
    Nithyasri, A.
    Sangeetha, S.
    Kshirsagar, Pravin R.
    Rajendran, A.
    Rajaram, A.
    Dilipkumar, S.
    [J]. Journal of Electrical Engineering and Technology, 2024, 19 (03): : 1837 - 1848