Gaussian Embedding of Linked Documents from a Pretrained Semantic Space

被引:0
|
作者
Gourru, Antoine [1 ]
Velcin, Julien [1 ]
Jacques, Julien [1 ]
机构
[1] Univ Lyon, Lyon 2, ERIC UR3083, Lyon, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian Embedding of Linked Documents (GELD) is a new method that embeds linked documents (e.g., citation networks) onto a pretrained semantic space (e.g., a set of word embeddings). We formulate the problem in such a way that we model each document as a Gaussian distribution in the word vector space. We design a generative model that combines both words and links in a consistent way. Leveraging the variance of a document allows us to model the uncertainty related to word and link generation. In most cases, our method outperforms state-of-the-art methods when using our document vectors as features for usual downstream tasks. In particular, GELD achieves better accuracy in classification and link prediction on Cora and Dblp. In addition, we demonstrate qualitatively the convenience of several properties of our method. We provide the implementation of GELD and the evaluation datasets to the community (https://github.com/AntoineGourru/DNEmbedding).
引用
收藏
页码:3912 / 3918
页数:7
相关论文
共 50 条
  • [1] Uncovering the essence of diverse media biases from the semantic embedding space
    Huang, Hong
    Zhu, Hua
    Liu, Wenshi
    Gao, Hua
    Jin, Hai
    Liu, Bang
    [J]. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2024, 11 (01):
  • [2] A semantic space approach for automatic summarization of documents
    Kaszas, Valer
    Tundik, Mate Akos
    Szaszak, Gyorgy
    [J]. 2018 9TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM), 2018, : 153 - 157
  • [3] Improving Gaussian Embedding for Extracting Local Semantic Connectivity in Networks
    Zheng, Chu
    Wu, Peiyun
    Zhang, Xiaowang
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2020, 2020, 12115 : 211 - 224
  • [4] Use of Linked Data principles for semantic management of scanned documents
    Pessanha Monteiro, Luciane Lena
    de Azevedo Jacyntho, Mark Douglas
    [J]. TRANSINFORMACAO, 2016, 28 (02): : 241 - 251
  • [5] Zero-Shot Object Detection via Learning an Embedding from Semantic Space to Visual Space
    Zhang, Licheng
    Wang, Xianzhi
    Yao, Lina
    Wu, Lin
    Zheng, Feng
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 906 - 912
  • [6] Semantic Sparse Service Discovery Using Word Embedding and Gaussian LDA
    Tian, Gang
    Zhao, Shengtao
    Wang, Jian
    Zhao, Ziqi
    Liu, Junju
    Guo, Lantian
    [J]. IEEE ACCESS, 2019, 7 : 88231 - 88242
  • [7] Gaussian LDA and Word Embedding for Semantic Sparse Web Service Discovery
    Tian, Gang
    Wang, Jian
    Zhao, Ziqi
    Liu, Junju
    [J]. COLLABORATE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2016, 2017, 201 : 48 - 59
  • [8] "Easy" meta-embedding for detecting and correcting semantic errors in Arabic documents
    Zribi, Chiraz Ben Othmane
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21161 - 21175
  • [9] “Easy” meta-embedding for detecting and correcting semantic errors in Arabic documents
    Chiraz Ben Othmane Zribi
    [J]. Multimedia Tools and Applications, 2023, 82 : 21161 - 21175
  • [10] SEMANTIC EMBEDDING SPACE FOR ZERO-SHOT ACTION RECOGNITION
    Xu, Xun
    Hospedales, Timothy
    Gong, Shaogang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 63 - 67