Fragility of symmetry-protected topological order on a Hubbard ladder

被引:25
|
作者
Moudgalya, Sanjay [1 ,2 ]
Pollmann, Frank [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Indian Inst Technol, Kanpur 208016, Uttar Pradesh, India
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 15期
关键词
SPIN LADDERS; CHAINS; PHASES; TRANSITIONS;
D O I
10.1103/PhysRevB.91.155128
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anfuso andRosch [Phys. Rev. B 75, 144420 (2007)] showed that the "topological" Haldane phase in a fermionic spin-1/2 ladder can be continuously deformed into a "trivial" phase without explicitly breaking symmetries when local charge fluctuations are taken into account. Within the framework of symmetry-protected topological phases, we revisit the model and demonstrate how the Haldane phase can be adiabatically connected to a trivial phase due to charge fluctuations. Furthermore, we show that the Haldane phase remains stable as long as the system is symmetric under particular reflection symmetries.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gapless Symmetry-Protected Topological Order
    Scaffidi, Thomas
    Parker, Daniel E.
    Vasseur, Romain
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [2] Dissipative symmetry-protected topological order
    Verissimo, Luan M.
    Lyra, Marcelo L.
    Orus, Roman
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [3] Symmetry-protected topological order at nonzero temperature
    Roberts, Sam
    Yoshida, Beni
    Kubica, Aleksander
    Bartlett, Stephen D.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [4] From symmetry-protected topological order to Landau order
    Duivenvoorden, Kasper
    Quella, Thomas
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [5] Universal symmetry-protected topological invariants for symmetry-protected topological states
    Hung, Ling-Yan
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [6] Composite symmetry-protected topological order and effective models
    Nietner, A.
    Krumnow, C.
    Bergholtz, E. J.
    Eisert, J.
    PHYSICAL REVIEW B, 2017, 96 (23)
  • [7] Quantum teleportation implies symmetry-protected topological order
    Hong, Yifan
    Stephen, David T.
    Friedman, Aaron J.
    QUANTUM, 2024, 8
  • [8] Quantum Computation on the Edge of a Symmetry-Protected Topological Order
    Miyake, Akimasa
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [9] Harnessing symmetry-protected topological order for quantum memories
    Goihl, M.
    Walk, N.
    Eisert, J.
    Tarantino, N.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [10] Identifying symmetry-protected topological order by entanglement entropy
    Li, Wei
    Weichselbaum, Andreas
    von Delft, Jan
    PHYSICAL REVIEW B, 2013, 88 (24):