Examining the Distribution of Sampling Point Sets on Sphere for Monte Carlo Image Rendering

被引:1
|
作者
Penzov, A. A. [1 ]
Dimov, I. T. [1 ]
Mitev, N. M. [1 ]
Sirakova, G. I. [1 ]
Szirmay-Kalos, L. [2 ]
机构
[1] Bulgarian Acad Sci, Dept Parallel Algorithms, Inst Informat & Commun Technol, Acad G Bonchev Str,Bl 25 A, BU-1113 Sofia, Bulgaria
[2] Budapest Univ Technol & Econ, H-1117 Budapest, Hungary
关键词
Sampling; Spherical Sampling Pattern; Uniform Separation Sampling; Generalized Discrepancy; Monte Carlo Image Rendering;
D O I
10.1063/1.3498369
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a study of several non-uniform and uniform techniques for sampling of unit sphere and gives an comparative analysis on uniform sampling techniques. Each sampling technique generates point sets distributed on sphere. We are interested to examine the quality of their distributions, which could impact on the Monte Carlo image creation. Generalized discrepancy is designed as a measure for equidistribution of point sets on spherical sampling patterns as well as applied to analyze sampling techniques used in rendering. We generate sphere sampling patterns using various random number generators and Halton low discrepancy sequence. The generalized discrepancy is computed for increasing number of points for each sampling pattern. Finally, the results for different uniform sampling techniques are studied and analyzed by comparison of the uniformity of distributions.
引用
收藏
页码:2103 / +
页数:2
相关论文
共 50 条
  • [1] Sampling-Distribution-Based Evaluation for Monte Carlo Rendering
    Freude, Christian
    Sakai, Hiroyuki
    Zsolnai-Feher, Karoly
    Wimmer, Michael
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2023, : 119 - 130
  • [2] Orthogonal Array Sampling for Monte Carlo Rendering
    Jarosz, Wojciech
    Enayet, Afnan
    Kensler, Andrew
    Kilpatrick, Charlie
    Christensen, Per
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (04) : 135 - 147
  • [3] Antithetic Sampling for Monte Carlo Differentiable Rendering
    Zhang, Cheng
    Dong, Zhao
    Doggett, Michael
    Zhao, Shuang
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [4] Monte Carlo Sampling with Hierarchical Move Sets: POSH Monte Carlo
    Nilmeier, Jerome
    Jacobson, Matthew P.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (08) : 1968 - 1984
  • [5] Sampling Analysis using Correlations for Monte Carlo Rendering
    Oztireli, A. Cengiz
    Singh, Gurprit
    [J]. SA'18: SIGGRAPH ASIA 2018 COURSES, 2018,
  • [6] Double Hierarchies for Efficient Sampling in Monte Carlo Rendering
    Bus, Norbert
    Boubekeur, Tamy
    [J]. ACM SIGGRAPH 2017 TALKS, 2017,
  • [7] Parallel Monte Carlo sampling scheme for sphere and hemisphere
    Dimov, I. T.
    Penzov, A. A.
    Stoilova, S. S.
    [J]. NUMERICAL METHODS AND APPLICATIONS, 2007, 4310 : 148 - 155
  • [8] Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering
    Zwicker, M.
    Jarosz, W.
    Lehtinen, J.
    Moon, B.
    Ramamoorthi, R.
    Rousselle, F.
    Sen, P.
    Soler, C.
    Yoon, S. -E.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (02) : 667 - 681
  • [9] Adaptive Sampling for Monte-Carlo Event Imagery Rendering
    Manabe, Yuichiro
    Yatagawa, Tatsuya
    Morishima, Shigeo
    Kubo, Hiroyuki
    [J]. PROCEEDINGS OF THE SIGGRAPH 2024 POSTERS, 2024,
  • [10] Aether: An Embedded Domain Specific Sampling Language for Monte Carlo Rendering
    Anderson, Luke
    Li, Tzu-Mao
    Lehtinen, Jaakko
    Durand, Fredo
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04):