On two-phase flow solvers in irregular domains with contact line

被引:35
|
作者
Lepilliez, Mathieu [1 ,2 ,3 ]
Popescu, Elena Roxana [1 ]
Gibou, Frederic [4 ,5 ]
Tanguy, Sebastien [1 ]
机构
[1] Inst Mecan Fluides Toulouse, 2bis Allee Prof Camille Soula, F-31400 Toulouse, France
[2] Ctr Natl Etud Spatiales, 18 Ave Edouard Belin, F-31401 Toulouse 9, France
[3] Airbus Defence & Space, 31 Ave Cosmonautes, F-31402 Toulouse 4, France
[4] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
Sharp interface methods; Irregular domains; Implicit viscosity; Contact lines; Level set method; Ghost-Fluid Method; IMMERSED BOUNDARY METHOD; CARTESIAN GRID METHOD; INCOMPRESSIBLE VISCOUS-FLOW; NAVIER-STOKES EQUATIONS; SHARP INTERFACE METHOD; LEVEL-SET APPROACH; SURFACE-TENSION; NUMERICAL-SIMULATION; MOVING BOUNDARIES; FLUID METHOD;
D O I
10.1016/j.jcp.2016.06.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present numerical methods that enable the direct numerical simulation of two-phase flows in irregular domains. A method is presented to account for surface tension effects in a mesh cell containing a triple line between the liquid, gas and solid phases. Our numerical method is based on the level-set method to capture the liquid-gas interface and on the single-phase Navier-Stokes solver in irregular domain proposed in [35] to impose the solid boundary in an Eulerian framework. We also present a strategy for the implicit treatment of the viscous term and how to impose both a Neumann boundary condition and a jump condition when solving for the pressure field. Special care is given on how to take into account the contact angle, the no-slip boundary condition for the velocity field and the volume forces. Finally, we present numerical results in two and three spatial dimensions evaluating our simulations with several benchmarks. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1217 / 1251
页数:35
相关论文
共 50 条
  • [1] Contact Angles in Two-Phase Flow Images
    Khanamiri, Hamid Hosseinzade
    Slotte, Per Arne
    Berg, Carl Fredrik
    TRANSPORT IN POROUS MEDIA, 2020, 135 (03) : 535 - 553
  • [2] Contact Angles in Two-Phase Flow Images
    Hamid Hosseinzade Khanamiri
    Per Arne Slotte
    Carl Fredrik Berg
    Transport in Porous Media, 2020, 135 : 535 - 553
  • [3] Two-phase flow through porous media in the fixed-contact-line regime
    Pride, SR
    Flekkoy, EG
    PHYSICAL REVIEW E, 1999, 60 (04): : 4285 - 4299
  • [4] Neural PDE Solvers for Irregular Domains
    Khara, Biswajit
    Herron, Ethan
    Balu, Aditya
    Gamdha, Dhruv
    Yang, Chih-Hsuan
    Saurabh, Kumar
    Jignasu, Anushrut
    Jiang, Zhanhong
    Sarkar, Soumik
    Hegde, Chinmay
    Ganapathysubramanian, Baskar
    Krishnamurthy, Adarsh
    COMPUTER-AIDED DESIGN, 2024, 172
  • [5] NUMERICAL MODELING OF CONTACT DISCONTINUITIES IN TWO-PHASE FLOW
    Remmerswaal, Ronald A.
    Veldman, Arthur E. P.
    MARINE 2019: COMPUTATIONAL METHODS IN MARINE ENGINEERING VIII: VIII INTERNATIONAL CONFERENCE ONCOMPUTATIONAL METHODS IN MARINE ENGINEERING (MARINE 2019), 2019, : 247 - 258
  • [6] A decoupled augmented IIM strategy for incompressible two-phase flows with interfaces on irregular domains
    Tan, Zhijun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (09) : 924 - 950
  • [7] Two-phase quadrature domains
    Gardiner, Stephen J.
    Sjodin, Tomas
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 116 : 335 - 354
  • [8] Two-phase quadrature domains
    Stephen J. Gardiner
    Tomas Sjödin
    Journal d'Analyse Mathématique, 2012, 116 : 335 - 354
  • [9] A phase-field method for two-phase fluid flow in arbitrary domains
    Yang, Junxiang
    Kim, Junseok
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1857 - 1874
  • [10] Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods
    Bilger, C.
    Aboukhedr, M.
    Vogiatzaki, K.
    Cant, R. S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 665 - 686