Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3

被引:72
|
作者
Peng, Baoxiang
Zhao, Chen
Mejia-Centeno, Isidro [2 ]
Fuentes, Gustavo A. [2 ]
Jentys, Andreas
Lercher, Johannes A. [1 ]
机构
[1] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
[2] Univ A Metropolitana Iztapalapa, Area Ingn Quim, Mexico City 09340, DF, Mexico
关键词
Aqueous phase; Decarbonylation; Decarboxylation; Disproportionation; Hydrodeoxygenation of alcohols; Glycerol; BIOMASS-DERIVED HYDROCARBONS; ION-EXCHANGE-RESIN; GLYCEROL HYDROGENOLYSIS; TRANSPORTATION FUELS; ETHYLENE-GLYCOL; CATALYSTS; WATER; CONVERSION; ALKANES; TEMPERATURE;
D O I
10.1016/j.cattod.2011.10.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The catalytic hydrodeoxygenation of C-3 alcohols (1- and 2-propanol, 1,2- and 1,3-propanediol, and glycerol) on Pt/Al2O3 has been mechanistically explored in the aqueous phase. Dehydrogenation on Pt and dehydration on alumina are the main elementary reaction pathways. In water, carbon-carbon bond cleavage for alcohols with terminal hydroxyl groups occurs via decarbonylation of aldehydes (generated by dehydrogenation of alcohols) and decarboxylation of acids, the latter being formed by disproportionation from aldehydes. The presence of water as solvent suppresses the dehydration for mono-alcohols mainly via blocking of Lewis acid sites by water. Dehydration is still the dominating primary reaction for 1,3-propanediol and glycerol, as the higher number of hydroxyl groups weakens the C-O bond strength. The overall reactivity of C-3 alcohols decreases in the order of 1,3-propanediol approximate to glycerol > 1,2-propanediol approximate to 1-propanol. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [1] Evaluation of anisole hydrodeoxygenation reaction pathways over a Ni/Al2O3 catalyst
    Dutta, Snehasis
    Shumeiko, Bogdan
    Aubrecht, Jaroslav
    Karaskova, Katerina
    Fridrichova, Dagmar
    Pacultova, Katerina
    Hlincik, Tomas
    Kubicka, David
    [J]. JOURNAL OF CATALYSIS, 2024, 435
  • [2] KINETICS OF REACTION AL2O3 - MGO
    CISMARU, D
    NACEA, V
    [J]. REVUE ROUMAINE DE CHIMIE, 1968, 13 (05) : 541 - &
  • [3] Hydrodeoxygenation of cracked vegetable oil using CoMo/Al2O3 and Pt/C catalysts
    Baldauf E.
    Sievers A.
    Willner T.
    [J]. International Journal of Energy and Environmental Engineering, 2016, 7 (3) : 273 - 287
  • [4] Kinetic study of glycerol hydrodeoxygenation on Al2O3 and NiMo2C/Al2O3 catalysts
    Duarte, Rafael Belo
    Corazza, Marcos Lucio
    Pimenta, Joao Lourenco Castagnari Willimann
    Jorge, Luiz Mario de Matos
    [J]. FUEL, 2023, 354
  • [5] SULFURATION OF PT/AL2O3, PT-RE/AL2O3 AND PT-IR/AL2O3 CATALYSTS
    APESTEGUIA, C
    BARBIER, J
    [J]. REACTION KINETICS AND CATALYSIS LETTERS, 1982, 19 (3-4): : 351 - 354
  • [6] RADIAL PROFILES IN PT/AL2O3, RE/AL2O3, AND PT-RE/AL2O3
    DEMIGUEL, SR
    SCELZA, OA
    CASTRO, AA
    BARONETTI, GT
    ARDILES, DR
    PARERA, JM
    [J]. APPLIED CATALYSIS, 1984, 9 (03): : 309 - 315
  • [7] Pt-Sn/Al2O3 catalyst for the selective hydrodeoxygenation of esters
    Zharova, Polina A.
    Chistyakov, Andrey V.
    Shapovalov, Sergey S.
    Pasynskii, Alexander A.
    Tsodikov, Mark V.
    [J]. MENDELEEV COMMUNICATIONS, 2018, 28 (01) : 91 - 92
  • [8] Comparison between the NOx release-reduction reaction for Pt/Ba/Al2O3 and Pt/K/Al2O3 on a millisecond time scale
    Sakamoto, Y.
    Matsunaga, S.
    Okumura, K.
    Kayama, T.
    Yamazaki, K.
    Takahashi, N.
    Tanaka, T.
    Kizaki, Y.
    Motohiro, T.
    Shinjoh, H.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (20) : 5028 - 5034
  • [9] DEACTIVATION KINETICS AND MECHANISM IN HEPTANE REFORMING OVER PT/AL2O3 AND PT-RE/AL2O3 CATALYSTS
    LIU, K
    QUERINI, CA
    RUMSCHITZKI, DS
    HO, TC
    FUNG, SC
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 62 - PETR
  • [10] Reaction kinetics of propane catalytic combustion on Cr/γ-Al2O3, Co/Cr/γ-Al2O3, and Au/Cr/γ-Al2O3
    Lin, JN
    Wan, BZ
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2004, 35 (02): : 149 - 159