Robust estimation in partially linear errors-in-variables models

被引:3
|
作者
Bianco, Ana M. [1 ,2 ]
Spano, Paula M. [3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2,Piso 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Dept Ciencias Exactas, Ciclo Basico Comun, Ciudad Univ, Buenos Aires, DF, Argentina
关键词
Fisher-consistency; Kernel weights; M-location functionals; Nonparametric regression; Robust estimation; REGRESSION;
D O I
10.1016/j.csda.2016.09.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many applications of regression analysis, there are covariates that are measured with errors. A robust family of estimators of the parametric and nonparametric components of a structural partially linear errors-in-variables model is introduced. The proposed estimators are based on a three-step procedure where robust orthogonal regression estimators are combined with robust smoothing techniques. Under regularity conditions, it is proved that the resulting estimators are consistent. The robustness of the proposal is studied by means of the empirical influence function when the linear parameter is estimated using the orthogonal M-estimator. A simulation study allows to compare the behaviour of the robust estimators with their classical relatives and a real example data is analysed to illustrate the performance of the proposal. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [1] Restricted Estimation in Partially Linear Errors-in-Variables Models
    Wei, Chuan-hua
    Jia, Xu-jie
    Hu, Hong-sheng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (08) : 1836 - 1847
  • [2] ESTIMATION OF ERRORS-IN-VARIABLES PARTIALLY LINEAR ADDITIVE MODELS
    Lee, Eun Ryung
    Han, Kyunghee
    Park, Byeong U.
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2353 - 2373
  • [3] Estimation and testing for partially functional linear errors-in-variables models
    Zhu, Hanbing
    Zhang, Riquan
    Yu, Zhou
    Lian, Heng
    Liu, Yanghui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 296 - 314
  • [4] Stochastic restricted estimation in partially linear additive errors-in-variables models
    Wei, Chuanhua
    Yang, Jin
    [J]. STATISTICAL PAPERS, 2020, 61 (03) : 1269 - 1279
  • [5] Stochastic restricted estimation in partially linear additive errors-in-variables models
    Chuanhua Wei
    Jin Yang
    [J]. Statistical Papers, 2020, 61 : 1269 - 1279
  • [6] Estimation of Partially Linear Regression for Errors-in-Variables Models with Validation Data
    Zhang, Yanyan
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2015, 322 : 733 - 742
  • [7] Estimation in a semiparametric partially linear errors-in-variables model
    Liang, H
    Härdle, W
    Carroll, RJ
    [J]. ANNALS OF STATISTICS, 1999, 27 (05): : 1519 - 1535
  • [8] Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models
    Yang, Xiaohan
    Jiang, Rong
    Qian, Weimin
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 561 - 578
  • [9] Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models
    Xiaohan YANG
    Rong JIANG
    Weimin QIAN
    [J]. Chinese Annals of Mathematics(Series B), 2015, 36 (04) : 561 - 578
  • [10] ESTIMATION OF QUANTIZED LINEAR ERRORS-IN-VARIABLES MODELS
    KRISHNAMURTHY, V
    [J]. AUTOMATICA, 1995, 31 (10) : 1459 - 1464