3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes

被引:0
|
作者
Zhong, Yiran [1 ]
Dai, Yuchao [2 ]
Li, Hongdong [3 ]
机构
[1] CSIRO, Res Sch Engn, ANU, Data61, Canberra, ACT, Australia
[2] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
[3] Australian Ctr Robot Vis, ANU, Res Sch Engn, Canberra, ACT, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the problem of how to better exploit 3D geometric information for dense semantic image labeling. Existing methods often treat the available 3D geometry information (e.g., 3D depth-map) simply as an additional image channel besides the R-G-B color channels, and apply the same technique for RGB image labeling. In this paper, we demonstrate that directly performing 3D convolution in the framework of a residual connected 3D voxel top-down modulation network can lead to superior results. Specifically, we propose a 3D semantic labeling method to label outdoor street scenes whenever a dense depth map is available. Experiments on the "Synthia" and "Cityscape" datasets show our method outperforms the state-of-the-art methods, suggesting such a simple 3D representation is effective in incorporating 3D geometric information.
引用
收藏
页码:2343 / 2349
页数:7
相关论文
共 50 条
  • [1] Geometry-Aware Scattering Compensation for 3D Printing
    Sumin, Denis
    Rittig, Tobias
    Babaei, Vahid
    Nindel, Thomas
    Wilkie, Alexander
    Didyk, Piotr
    Bickel, Bernd
    Krivanek, Jaroslav
    Myszkowski, Karol
    Weyrich, Tim
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [2] Nonparametric Semantic Segmentation for 3D Street Scenes
    He, Hu
    Upcroft, Ben
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 3697 - 3703
  • [3] A GEOMETRY-AWARE FRAMEWORK FOR COMPRESSING 3D MESH TEXTURES
    Nasiri, Fatemeh
    Bidgoli, Navid Mahmoudian
    Payan, Frederic
    Maugey, Thomas
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4015 - 4019
  • [4] Supervised, Geometry-aware segmentation of 3D mesh Models
    Bamba, Keisuke
    Ohbuchi, Ryutarou
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2012, : 49 - 54
  • [5] Efficient Geometry-aware 3D Generative Adversarial Networks
    Chan, Eric R.
    Lin, Connor Z.
    Chan, Matthew A.
    Nagano, Koki
    Pan, Boxiao
    de Mello, Shalini
    Gallo, Orazio
    Guibas, Leonidas
    Tremblay, Jonathan
    Khamis, Sameh
    Karras, Tero
    Wetzstein, Gordon
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16102 - 16112
  • [6] Geometry-aware 3D pose transfer using transformer autoencoder
    Liu, Shanghuan
    Gai, Shaoyan
    Da, Feipeng
    Waris, Fazal
    [J]. COMPUTATIONAL VISUAL MEDIA, 2024, 10 (06) : 1063 - 1078
  • [7] Computing geometry-aware handle and tunnel loops in 3D models
    Dey, Tamal K.
    Li, Kuiyu
    Sun, Jian
    Cohen-Steiner, David
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [8] A geometry-aware compression of 3D mesh texture with random access
    Bidgoli, Navid Mahmoudian
    Maugey, Thomas
    Roumy, Aline
    Nasiri, Fatemeh
    Payan, Frdrric
    [J]. 2019 PICTURE CODING SYMPOSIUM (PCS), 2019,
  • [9] Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation
    Rhodin, Helge
    Salzmann, Mathieu
    Fua, Pascal
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 765 - 782
  • [10] Geometry-Aware Distillation for Indoor Semantic Segmentation
    Jiao, Jianbo
    Wei, Yunchao
    Jie, Zequn
    Shi, Honghui
    Lau, Rynson
    Huang, Thomas S.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2864 - 2873