Bilinear quantile optimization: A numerical algorithm

被引:0
|
作者
Efremov, VA [1 ]
机构
[1] Aviat Inst, Moscow, Russia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The extremum point of the sample estimate of the quantile function is tak en to be the estimate for the solution of the quantile optimization problem having a bilinear loss function. A statistical analog of the generalized minimax approach is developed for representing the sample estimate of the quantile function, in minimax fern. The search: far the point of extremum of the sample estimate of the quantile function is reduced to an, equivalent minimax: problem. The minimax problem is solved by sequentially solving a finite number of linear programming problems. The results are illustrated by a numerical example.
引用
收藏
页码:1558 / 1567
页数:10
相关论文
共 50 条
  • [1] A method for solving quantile optimization problems with a bilinear loss function
    Vasil'eva, S. N.
    Kan, Yu. S.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (09) : 1582 - 1597
  • [2] A method for solving quantile optimization problems with a bilinear loss function
    S. N. Vasil’eva
    Yu. S. Kan
    Automation and Remote Control, 2015, 76 : 1582 - 1597
  • [3] DESCENT ALGORITHM FOR OPTIMIZATION OF BILINEAR SYSTEMS
    OWENS, DH
    ELECTRONICS LETTERS, 1975, 11 (15) : 335 - 336
  • [4] On bilinear hazard quantile functions
    Sankaran, P.
    Thomas, Bijamma
    Midhu, N.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2015, 73 (01): : 135 - 148
  • [5] On Convergence of a Stochastic Quasigradient Algorithm of Quantile Optimization
    Yu. S. Kan
    Automation and Remote Control, 2003, 64 : 263 - 278
  • [6] On convergence of a stochastic quasigradient algorithm of quantile optimization
    Kan, YS
    AUTOMATION AND REMOTE CONTROL, 2003, 64 (02) : 263 - 278
  • [7] The bilinear mean residual quantile function
    Aswin, I. C.
    Sankaran, P. G.
    Sunoj, S. M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) : 7115 - 7129
  • [8] Quantile minimization with bilinear loss function
    Kan, YS
    Rusyaev, AV
    AUTOMATION AND REMOTE CONTROL, 1998, 59 (07) : 960 - 966
  • [9] A GLOBAL OPTIMIZATION ALGORITHM FOR LINEAR FRACTIONAL AND BILINEAR PROGRAMS
    QUESADA, I
    GROSSMANN, IE
    JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (01) : 39 - 76
  • [10] Bilinear interpolation algorithm based on gradient-weighted optimization
    Zhao, LinTong
    Che, Kai
    Lv, Jian
    Zhou, Yun
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 634 - 639