GEOMETRIC INVARIANT THEORY AND GENERALIZED EIGENVALUE PROBLEM II

被引:12
|
作者
Ressayre, Nicolas [1 ]
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
关键词
Branching rule; generalized Horn problem; Littlewood-Richardson cone; GIT-cone;
D O I
10.5802/aif.2647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive subgroup of a complex connected reductive group (G) over cap. Fix maximal tori and Borel subgroups of G and (G) over cap. Consider the cone LR degrees(G, (G) over cap) generated by the pairs (nu, (nu) over cap) of strictly dominant characters such that V-nu* is a submodule of V-(nu) over cap. We obtain a bijective parametrization of the faces of LR degrees(G, (G) over cap )as a consequence of general results on GIT-cones. We show how to read the inclusion of faces off this parametrization.
引用
收藏
页码:1467 / 1491
页数:25
相关论文
共 50 条