ASSUMED DENSITY FILTERING FOR LEARNING GAUSSIAN PROCESS MODELS

被引:0
|
作者
Ramakrishnan, Naveen [1 ]
Ertin, Emre [1 ]
Moses, Randolph L. [1 ]
机构
[1] Ohio State Univ, Dept ECE, Columbus, OH 43210 USA
关键词
Machine learning; sensor networks; assumed density filtering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the probabilistic modeling of censored sensor readings. Specifically, we first model the sensor observations using Gaussian process framework and develop two computational techniques - one based on Assumed Density Filtering (ADF) and the other based on Monte-Carlo method, for estimating the parameters of the approximate posterior density of the sensor observations. We compare their performances using a simulated sensor network example and show that the ADF-based technique is much faster than the Monte-Carlo-based technique. Further, we also show that our approach performs better than the standard Gaussian process regression technique which simply discards the information from sensors that fail to detect the source phenomena.
引用
收藏
页码:257 / 260
页数:4
相关论文
共 50 条
  • [1] Assumed Density Filtering Q-learning
    Jeong, Heejin
    Zhang, Clark
    Pappas, George J.
    Lee, Daniel D.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2607 - 2613
  • [2] Assumed Density Filtering Methods for Learning Bayesian Neural Networks
    Ghosh, Soumya
    Delle Fave, Francesco Maria
    Yedidia, Jonathan
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1589 - 1595
  • [3] Progressive Gaussian filtering for nonlinear uncertain systems based on Gaussian process models
    Wang, Qichao
    Zhuge, Xiaolei
    Yang, Xusheng
    Zhang, Wen-An
    SIGNAL PROCESSING, 2025, 230
  • [4] Bayesian Filtering with Online Gaussian Process Latent Variable Models
    Wang, Yali
    Brubaker, Marcus A.
    Chaib-draa, Brahim
    Urtasun, Raquel
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 849 - 857
  • [5] Semi-Analytic Gaussian Assumed Density Filter
    Huber, Marco F.
    Beutler, Frederik
    Hanebeck, Uwe D.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3006 - 3011
  • [6] Ensemble Kalman Filtering for Online Gaussian Process Regression and Learning
    Kuzin, Danil
    Yang, Le
    Isupova, Olga
    Mihaylova, Lyudmila
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 39 - 46
  • [7] Learning Gaussian Process Models from Uncertain Data
    Dallaire, Patrick
    Besse, Camille
    Chaib-draa, Brahim
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 433 - 440
  • [8] Learning Stable Gaussian Process State Space Models
    Umlauft, Jonas
    Lederer, Armin
    Hirche, Sandra
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1499 - 1504
  • [9] Sequential process convolution Gaussian process models via particle learning
    Liang, Waley W. J.
    Lee, Herbert K. H.
    STATISTICS AND ITS INTERFACE, 2014, 7 (04) : 465 - 475
  • [10] Numerical Gaussian process Kalman filtering
    Kueper, Armin
    Waldherr, Steffen
    IFAC PAPERSONLINE, 2020, 53 (02): : 11416 - 11421