A General Framework for Detecting Disease Associations with Rare Variants in Sequencing Studies

被引:6
|
作者
Lin, Dan-Yu [1 ]
Tang, Zheng-Zheng [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
STATISTICAL SIGNIFICANCE; COMMON DISEASES; RISK;
D O I
10.1016/j.ajhg.2011.07.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Biological and empirical evidence suggests that rare variants account for a large proportion of the genetic contributions to complex human diseases. Recent technological advances in high-throughput sequencing platforms have made it possible for researchers to generate comprehensive information on rare variants in large samples. We provide a general framework for association testing with rare variants by combining mutation information across multiple variant sites within a gene and relating the enriched genetic information to disease phenotypes through appropriate regression models. Our framework covers all major study designs (i.e., case-control, cross-sectional, cohort and family studies) and all common phenotypes (e.g., binary, quantitative, and age at onset), and it allows arbitrary covariates (e.g., environmental factors and ancestry variables). We derive theoretically optimal procedures for combining rare mutations and construct suitable test statistics for various biological scenarios. The allele-frequency threshold can be fixed or variable. The effects of the combined rare mutations on the phenotype can be in the same direction or different directions. The proposed methods are statistically more powerful and computationally more efficient than existing ones. An application to a deep-resequencing study of drug targets led to a discovery of rare variants associated with total cholesterol. The relevant software is freely available.
引用
收藏
页码:354 / 367
页数:14
相关论文
共 50 条
  • [1] A General Framework for Detecting Disease Associations With Rare Variants in Sequencing Studies
    Lin, D. Y.
    Tang, Z. Z.
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 119 - 119
  • [2] General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
    Lee, Seunggeun
    Teslovich, Tanya M.
    Boehnke, Michael
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) : 42 - 53
  • [3] Resequencing of Pooled DNA for Detecting Disease Associations with Rare Variants
    Wang, Tao
    Lin, Chang-Yun
    Rohan, Thomas E.
    Ye, Kenny
    GENETIC EPIDEMIOLOGY, 2010, 34 (05) : 492 - 501
  • [4] A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies
    Li, Zilin
    Li, Xihao
    Zhou, Hufeng
    Gaynor, Sheila M.
    Selvaraj, Margaret Sunitha
    Arapoglou, Theodore
    Quick, Corbin
    Liu, Yaowu
    Chen, Han
    Sun, Ryan
    Dey, Rounak
    Arnett, Donna K.
    Auer, Paul L.
    Bielak, Lawrence F.
    Bis, Joshua C.
    Blackwell, Thomas W.
    Blangero, John
    Boerwinkle, Eric
    Bowden, Donald W.
    Brody, Jennifer A.
    Cade, Brian E.
    Conomos, Matthew P.
    Correa, Adolfo
    Cupples, L. Adrienne
    Curran, Joanne E.
    de Vries, Paul S.
    Duggirala, Ravindranath
    Franceschini, Nora
    Freedman, Barry, I
    Goring, Harald H. H.
    Guo, Xiuqing
    Kalyani, Rita R.
    Kooperberg, Charles
    Kral, Brian G.
    Lange, Leslie A.
    Lin, Bridget M.
    Manichaikul, Ani
    Manning, Alisa K.
    Martin, Lisa W.
    Mathias, Rasika A.
    Meigs, James B.
    Mitchell, Braxton D.
    Montasser, May E.
    Morrison, Alanna C.
    Naseri, Take
    O'Connell, Jeffrey R.
    Palmer, Nicholette D.
    Peyser, Patricia A.
    Psaty, Bruce M.
    Raffield, Laura M.
    NATURE METHODS, 2022, 19 (12) : 1599 - +
  • [5] A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies
    Zilin Li
    Xihao Li
    Hufeng Zhou
    Sheila M. Gaynor
    Margaret Sunitha Selvaraj
    Theodore Arapoglou
    Corbin Quick
    Yaowu Liu
    Han Chen
    Ryan Sun
    Rounak Dey
    Donna K. Arnett
    Paul L. Auer
    Lawrence F. Bielak
    Joshua C. Bis
    Thomas W. Blackwell
    John Blangero
    Eric Boerwinkle
    Donald W. Bowden
    Jennifer A. Brody
    Brian E. Cade
    Matthew P. Conomos
    Adolfo Correa
    L. Adrienne Cupples
    Joanne E. Curran
    Paul S. de Vries
    Ravindranath Duggirala
    Nora Franceschini
    Barry I. Freedman
    Harald H. H. Göring
    Xiuqing Guo
    Rita R. Kalyani
    Charles Kooperberg
    Brian G. Kral
    Leslie A. Lange
    Bridget M. Lin
    Ani Manichaikul
    Alisa K. Manning
    Lisa W. Martin
    Rasika A. Mathias
    James B. Meigs
    Braxton D. Mitchell
    May E. Montasser
    Alanna C. Morrison
    Take Naseri
    Jeffrey R. O’Connell
    Nicholette D. Palmer
    Patricia A. Peyser
    Bruce M. Psaty
    Laura M. Raffield
    Nature Methods, 2022, 19 : 1599 - 1611
  • [6] Detecting disease association with rare variants in case-parents studies
    Li, Yu-Mei
    Xiang, Yang
    JOURNAL OF HUMAN GENETICS, 2017, 62 (05) : 549 - 552
  • [7] Detecting disease association with rare variants in case-parents studies
    Yu-Mei Li
    Yang Xiang
    Journal of Human Genetics, 2017, 62 : 549 - 552
  • [8] Detecting associations of rare variants with common diseases: collapsing or haplotyping?
    Wang, Meng
    Lin, Shili
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (05) : 759 - 768
  • [9] Methods for detecting associations between phenotype and aggregations of rare variants
    Fan Yang
    Chul Joo Kang
    Paul Marjoram
    BMC Proceedings, 5 (Suppl 9)
  • [10] A New Method for Detecting Associations with Rare Copy-Number Variants
    Tzeng, Jung-Ying
    Magnusson, Patrik K. E.
    Sullivan, Patrick F.
    Szatkiewicz, Jin P.
    PLOS GENETICS, 2015, 11 (10):