Detecting Outliers with Poisson Image Interpolation

被引:27
|
作者
Tan, Jeremy [1 ]
Hou, Benjamin [1 ]
Day, Thomas [2 ]
Simpson, John [2 ]
Rueckert, Daniel [1 ]
Kainz, Bernhard [1 ,3 ]
机构
[1] Imperial Coll London, London SW7 2AZ, England
[2] Kings Coll London, St Thomas Hosp, London SE1 7EH, England
[3] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Germany
基金
英国惠康基金; 英国科研创新办公室;
关键词
Outlier detection; Self-supervised learning; ANOMALY DETECTION;
D O I
10.1007/978-3-030-87240-3_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised learning of every possible pathology is unrealistic for many primary care applications like health screening. Image anomaly detection methods that learn normal appearance from only healthy data have shown promising results recently. We propose an alternative to image reconstruction-based and image embedding-based methods and propose a new self-supervised method to tackle pathological anomaly detection. Our approach originates in the foreign patch interpolation (FPI) strategy that has shown superior performance on brain MRI and abdominal CT data. We propose to use a better patch interpolation strategy, Poisson image interpolation (PII), which makes our method suitable for applications in challenging data regimes. PII outperforms state-of-the-art methods by a good margin when tested on surrogate tasks like identifying common lung anomalies in chest X-rays or hypoplastic left heart syndrome in prenatal, fetal cardiac ultrasound images. Code available at https://github.com, jemtan/PII.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 50 条
  • [1] DETECTING OUTLIERS
    REEDY, TJ
    [J]. DR DOBBS JOURNAL, 1992, 17 (11): : 10 - &
  • [2] A digital image watermarking technique with detecting the location of any image interpolation
    Wu, F
    Rui, GS
    [J]. ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 6024 - 6027
  • [3] DETECTION OF OUTLIERS IN POISSON SAMPLES
    PAUL, SR
    BARNWAL, RK
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (08) : 2391 - 2403
  • [4] DETECTION AND INTERPOLATION OF OUTLIERS IN BIOSIGNALS
    CIPRA, T
    FUCHS, A
    FORMANEK, J
    KUBAT, J
    MIKISKOVA, H
    ZAJICEK, P
    DVORAK, J
    [J]. ACTIVITAS NERVOSA SUPERIOR, 1990, 32 (04): : 283 - 291
  • [5] Outliers, Part II: Pitfalls in Detecting Outliers
    Mark, Howard
    Workman, Jerome, Jr.
    [J]. SPECTROSCOPY, 2018, 33 (02) : 24 - +
  • [6] INTERPOLATION, OUTLIERS AND INVERSE AUTOCORRELATIONS
    PENA, D
    MARAVALL, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (10) : 3175 - 3186
  • [7] DETECTING OUTLIERS - RESPONSE
    不详
    [J]. DR DOBBS JOURNAL, 1992, 17 (11): : 12 - &
  • [8] On Detecting Spatial Outliers
    Dechang Chen
    Chang-Tien Lu
    Yufeng Kou
    Feng Chen
    [J]. GeoInformatica, 2008, 12 : 455 - 475
  • [9] Detecting multivariate outliers
    Caroni, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1996, 45 (04) : 495 - 495
  • [10] On detecting spatial outliers
    Chen, Dechang
    Lu, Chang-Tien
    Kou, Yufeng
    Chen, Feng
    [J]. GEOINFORMATICA, 2008, 12 (04) : 455 - 475