Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem

被引:37
|
作者
Lai, Xiangjing [1 ]
Hao, Jin-Kao [2 ,4 ]
Fu, Zhang-Hua [3 ,5 ]
Yue, Dong [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210023, Peoples R China
[2] Univ Angers, LERIA, 2 Blvd Lavoisier, F-49045 Angers, France
[3] Chinese Univ Hong Kong, Inst Robot & Intelligent Mfg, Shenzhen 518172, Peoples R China
[4] Inst Univ France, 1 Rue Descartes, F-75231 Paris, France
[5] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Binary optimization; Multidimensional knapsack problem; Population-based metaheuristics; Quantum particle swarm optimization; Diversity-preserving population updating strategy; LOCAL SEARCH; TABU SEARCH; ALGORITHM; HYBRID;
D O I
10.1016/j.eswa.2020.113310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum particle swarm optimization is a population-based metaheuristic that becomes popular in recent years in the field of binary optimization. In this paper, we investigate a novel quantum particle swarm optimization algorithm, which integrates a distanced-based diversity-preserving strategy for population management and a local optimization method based on variable neighborhood descent for solution improvement. We evaluate the proposed method on the classic NP-hard 0-1 multidimensional knapsack problem. We present extensive computational results on the 270 benchmark instances commonly used in the literature to show the competitiveness of the proposed algorithm compared to several state-of-the-art algorithms. The ideas of using the diversity-preserving strategy and the probabilistic application of a local optimization procedure are of general interest and can be used to reinforce other quantum particle swarm algorithms. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A hybrid quantum particle swarm optimization for the Multidimensional Knapsack Problem
    Haddar, Boukthir
    Khemakhem, Mahdi
    Hanafi, Said
    Wilbaut, Christophe
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 55 : 1 - 13
  • [2] Particle Swarm Optimization for the multidimensional knapsack problem
    Hembecker, Fernanda
    Lopes, Heitor S.
    Godoy, Walter, Jr.
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 358 - +
  • [3] Apply the particle swarm optimization to the multidimensional knapsack problem
    Kong, Min
    Tian, Peng
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1140 - 1149
  • [4] A Diversification-based Quantum Particle Swarm Optimization Algorithm for the Multidimensional Knapsack Problem
    Lai, Xiangjing
    Hao, JinKao
    Yue, Dong
    Gao, Hao
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 315 - 319
  • [5] Modified Binary Particle Swarm Optimization for Multidimensional Knapsack Problem
    Lee, Sangwook
    Hong, Suckjoo
    ADVANCED SCIENCE LETTERS, 2016, 22 (11) : 3688 - 3691
  • [6] A Fast Particle Swarm Optimization Algorithm for the Multidimensional Knapsack Problem
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [7] An adaptive binary quantum-behaved particle swarm optimization algorithm for the multidimensional knapsack problem
    Li, Xiaotong
    Fang, Wei
    Zhu, Shuwei
    Zhang, Xin
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [8] A fast particle swarm optimization algorithm for large scale multidimensional knapsack problem
    Kang, Kunpeng
    Journal of Computational Information Systems, 2012, 8 (07): : 2709 - 2716
  • [9] Set-based particle swarm optimization applied to the multidimensional knapsack problem
    Langeveld, Joost
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, 2012, 6 (04) : 297 - 342
  • [10] Set-based particle swarm optimization applied to the multidimensional knapsack problem
    Joost Langeveld
    Andries P. Engelbrecht
    Swarm Intelligence, 2012, 6 : 297 - 342