MIMO-NET: A MULTI-INPUT MULTI-OUTPUT CONVOLUTIONAL NEURAL NETWORK FOR CELL SEGMENTATION IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Raza, Shan E. Ahmed [1 ]
Cheung, Linda [2 ]
Epstein, David [3 ]
Pelengaris, Stella [2 ]
Khan, Michael [2 ]
Rajpoot, Nasir M. [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
[2] Univ Warwick, Sch Life Sci, Coventry, W Midlands, England
[3] Univ Warwick, Dept Math, Coventry, W Midlands, England
基金
英国生物技术与生命科学研究理事会;
关键词
Cell Segmentation; Fluorescence Microscopy; Deep Learning;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose a novel multiple-input multiple-output convolution neural network (MIMO-Net) for cell segmentation in fluorescence microscopy images. The proposed network trains the network parameters using multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The MIMO-Net allows us to deal with variable intensity cell boundaries and highly variable cell size in the mouse pancreatic tissue by adding extra convolutional layers which bypass the max-pooling operation. The results show that our method outperforms state-of-the-art deep learning based approaches for segmentation.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 50 条
  • [1] A multi-input multi-output functional artificial neural network
    Newcomb, RW
    deFigueiredo, RJP
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 1996, 4 (03) : 207 - 213
  • [2] Multi-Input Multi-Output (MIMO) Modeling and Control for Stamping
    Lim, Yongseob
    Venugopal, Ravinder
    Ulsoy, A. Galip
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (04): : 1 - 12
  • [3] Online neural identification of multi-input multi-output systems
    Bazaei, A.
    Moallem, M.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01): : 44 - 50
  • [4] MIMO-NeRF: Fast Neural Rendering with Multi-input Multi-output Neural Radiance Fields
    Kaneko, Takuhiro
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3250 - 3260
  • [5] Analysis of multi-input multi-output transactions in the Bitcoin network
    Phetsouvanh, Silivanxay
    Datta, Anwitaman
    Oggier, Frederique
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (01):
  • [6] Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing
    Choi, Jeongsub
    Zhu, Mengmeng
    Kang, Jihoon
    Jeong, Myong K.
    ANNALS OF OPERATIONS RESEARCH, 2024, 339 (1-2) : 185 - 201
  • [7] Stable multi-input multi-output adaptive fuzzy neural control
    Ordóñez, R
    Passino, KM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (03) : 345 - 353
  • [8] Multi-Input Multi-Output Deletion Channel
    Wang, Feng
    Duman, Tolga M.
    IEEE COMMUNICATIONS LETTERS, 2012, 16 (11) : 1729 - 1732
  • [9] CAMION: Cascade Multi-input Multi-output Network for Skeleton Extraction
    Fang, Sheng
    Li, Kaiyu
    Li, Zhe
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2951 - 2956
  • [10] A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
    Hou, Bingxin
    Liu, Ying
    Ling, Nam
    Liu, Lingzhi
    Ren, Yongxiong
    IEEE ACCESS, 2021, 9 (09) : 148433 - 148448