Improved Regression Models for Algorithm Configuration

被引:2
|
作者
de Souza, Marcelo [1 ,2 ]
Ritt, Marcus [3 ]
机构
[1] Univ Estado Santa Catarina, Florianopolis, SC, Brazil
[2] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
关键词
Instance-specific algorithm configuration; per-instance parameter tuning; parameter regression models; AUTOMATED CONFIGURATION; PERFORMANCE;
D O I
10.1145/3512290.3528750
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Offline algorithm configuration methods search for fixed parameter values for a given set of problem instances. For each parameter, such methods perform an equivalent to a constant regression, since the parameter value remains constant for any problem instance. However, optimal parameter values may depend on instance features, such as the instance size. In this paper, we represent parameters by non-constant models, which set the parameter values according to the instance size. Instead of searching for parameter values directly, the configuration process calibrates such models. In particular, we propose a simple yet effective linear model, which approximates linear relations between instance size and optimal parameter values. For modeling nonlinear relations, we propose piecewise and log-log linear models. The evaluation of the proposed methods on four configuration scenarios show good performance gains in comparison to traditional instance-independent algorithm configuration with comparable tuning effort.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 50 条
  • [1] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    [J]. IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [2] An Improved LSSVM Regression Algorithm
    Hou, Likun
    Yang, Qingxin
    An, Jinlong
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 138 - 140
  • [3] An Improved Quantum Algorithm for Ridge Regression
    Yu, Chao-Hua
    Gao, Fei
    Wen, Qiao-Yan
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) : 858 - 866
  • [4] Improved inferences for spatial regression models
    Liu, Shew Fan
    Yang, Zhenlin
    [J]. REGIONAL SCIENCE AND URBAN ECONOMICS, 2015, 55 : 55 - 67
  • [5] REGRESSION MODELLING BASED ON IMPROVED GENETIC ALGORITHM
    Shi Minghua
    Xiao Qingxian
    Zhou Benda
    Yang Feng
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2017, 24 (01): : 63 - 70
  • [6] An Improved Interior Point Algorithm for Quantile Regression
    Zhao, Pan
    Yu, Shenghua
    [J]. IEEE ACCESS, 2020, 8 : 139647 - 139657
  • [7] Improved heuristic algorithm for support vector regression
    Yang Hui-zhong
    Shao Xin-guang
    Shi Chen-xi
    [J]. Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 860 - 862
  • [8] Regression modelling based on improved genetic algorithm
    Regresijsko modeliranje zasnovano na poboljšanom genetičkom algoritmu
    [J]. 2017, Strojarski Facultet (24):
  • [9] IMPROVED ESTIMATION IN LOGNORMAL REGRESSION-MODELS
    RUKHIN, AL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 18 (03) : 291 - 297
  • [10] . IMPROVED PENALTY STRATEGIES in LINEAR REGRESSION MODELS
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    Gungor, Mehmet
    [J]. REVSTAT-STATISTICAL JOURNAL, 2017, 15 (02) : 251 - 276