Coexistence steady states in a predator-prey model

被引:2
|
作者
Walker, Christoph [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Age structure; Diffusion; Population model; Bifurcation; Steady states; BIFURCATION; EQUATIONS;
D O I
10.1007/s00013-010-0133-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An age-structured predator-prey system with diffusion and Holling-Tanner-type nonlinearities is investigated. Regarding the intensity of the fertility of the predator as bifurcation parameter, we prove that a branch of positive coexistence steady states bifurcates from the marginal steady state with no predator. A similar result is shown when the fertility of the prey varies.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Coexistence steady states in a predator–prey model
    Christoph Walker
    [J]. Archiv der Mathematik, 2010, 95 : 87 - 99
  • [2] Steady states of a predator-prey model with prey-taxis
    Li, Chenglin
    Wang, Xuhuang
    Shao, Yuanfu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 : 155 - 168
  • [3] Positive Coexistence of Steady States for a Diffusive Ratio-Dependent Predator-Prey Model with an Infected Prey
    Kim, Kwangjoong
    Ahn, Inkyung
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [4] COEXISTENCE THEOREMS OF STEADY-STATES FOR PREDATOR-PREY INTERACTING SYSTEMS
    LI, LG
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) : 143 - 166
  • [5] Coexistence states of a predator-prey model with cross-diffusion
    Yuan, Hailong
    Wu, Jianhua
    Jia, Yunfeng
    Nie, Hua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 179 - 203
  • [6] Steady states and spatiotemporal evolution of a diffusive predator-prey model
    Chen, Mengxin
    Wu, Ranchao
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 170
  • [7] EXISTENCE OF POSITIVE STEADY STATES FOR A PREDATOR-PREY MODEL WITH DIFFUSION
    Zhou, Wenshu
    Zhao, Hongxing
    Wei, Xiaodan
    Xu, Guokai
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 2189 - 2201
  • [8] Asymptotic behaviour of positive steady states to a predator-prey model
    Du, Yihong
    Wang, Mingxin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 759 - 778
  • [9] The Coexistence States of a Predator-Prey Model with Nonmonotonic Functional Response and Diffusion
    Jia, Yunfeng
    Wu, Jianhua
    Nie, Hua
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (02) : 413 - 428
  • [10] The Coexistence States of a Predator-Prey Model with Nonmonotonic Functional Response and Diffusion
    Yunfeng Jia
    Jianhua Wu
    Hua Nie
    [J]. Acta Applicandae Mathematicae, 2009, 108 : 413 - 428