Quantum speedup of Bayes' classifiers

被引:6
|
作者
Shao, Changpeng [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1UG, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
quantum algorithms; quantum computing; Bayes' classifiers; machine learning;
D O I
10.1088/1751-8121/ab5d77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naive Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to apply this technique effectively, we propose a general method to construct the block-encoding. As an application, we show that all the three classifiers achieve exponential speedup at the number of samples over their classical counterparts. As for the dimension of the space, quantum quadratic and linear classifiers achieve varying degrees of polynomial speedup, while quantum naive Bayes' classifier achieves an exponential speedup. The only assumption we make is the qRAM to prepare quantum states of the input data.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Quantum Bayes classifiers and their application in image classification
    Wang, Ming-Ming
    Zhang, Xiao-Ying
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [2] Robust Bayes classifiers
    Ramoni, M
    Sebastiani, P
    [J]. ARTIFICIAL INTELLIGENCE, 2001, 125 (1-2) : 209 - 226
  • [3] On the Interpretation of Ensemble Classifiers in Terms of Bayes Classifiers
    Tri Le
    Bertrand Clarke
    [J]. Journal of Classification, 2018, 35 : 198 - 229
  • [4] On the Interpretation of Ensemble Classifiers in Terms of Bayes Classifiers
    Le, Tri
    Clarke, Bertrand
    [J]. JOURNAL OF CLASSIFICATION, 2018, 35 (02) : 198 - 229
  • [5] Quantum Speedup by Quantum Annealing
    Somma, Rolando D.
    Nagaj, Daniel
    Kieferova, Maria
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [6] Directional naive Bayes classifiers
    Pedro L. López-Cruz
    Concha Bielza
    Pedro Larrañaga
    [J]. Pattern Analysis and Applications, 2015, 18 : 225 - 246
  • [7] Directional naive Bayes classifiers
    Lopez-Cruz, Pedro L.
    Bielza, Concha
    Larranaga, Pedro
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 225 - 246
  • [8] Restricted Bayes optimal classifiers
    Tong, S
    Koller, D
    [J]. SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 658 - 664
  • [9] Predicting the accuracy of Bayes classifiers
    Snapp, RR
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 295 - 302
  • [10] On pairwise naive Bayes classifiers
    Sulzmann, Jan-Nikolas
    Fuernkranz, Johannes
    Huellermeier, Eyke
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 371 - +