Recent advances and perspectives of microsized alloying-type porous anode materials in high- performance Li- and Na-ion batteries

被引:42
|
作者
Li, Gaojie [1 ,2 ,3 ]
Guo, Siguang [1 ]
Xiang, Ben [1 ]
Mei, Shixiong [1 ]
Zheng, Yang [1 ]
Zhang, Xuming [1 ]
Gao, Biao [1 ]
Chu, Paul K. [4 ,5 ]
Huo, Kaifu [2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Inst Adv Mat & Nanotechnol, State Key Lab Refractories & Met, Wuhan 430081, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[4] City Univ Hong Kong, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
来源
ENERGY MATERIALS | 2022年 / 2卷 / 03期
基金
中国国家自然科学基金;
关键词
Alloy-type materials; microsized porous materials; lithium-ion batteries; sodium-ion batteries; MESOPOROUS SILICON; HIGH-CAPACITY; INVERSE-OPAL; GERMANIUM PARTICLES; NEGATIVE ELECTRODE; SODIUM STORAGE; CHEMICAL-REDUCTION; HOLLOW NANOSPHERES; SCALABLE SYNTHESIS; RECENT PROGRESS;
D O I
10.20517/energymater.2022.24
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Alloying materials (e.g., Si, Ge, Sn, Sb, and so on) are promising anode materials for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high capacity, suitable working voltage, earth abundance, environmental friendliness, and non-toxicity. Although some important breakthroughs have been reported recently for these materials, their dramatic volume change during alloying/dealloying causes severe pulverization, leading to poor cycling stability and safety risks. Although the nanoengineering of alloys can mitigate the volumetric expansion to some extent, there remain other drawbacks, such as low initial Columbic efficiency and volumetric energy density. Porous microscale alloys comprised of nanoparticles and nanopores inherit micro-and nanoproperties, so that volume expansion during lithiation/sodiation can be better accommodated by the porous structure to consequently release stress and improve the cycling stability. Herein, the recent progress of porous microscale alloying-type anode materials for LIBs and SIBs is reviewed by summarizing the Li and Na storage mechanisms, the challenges associated with different materials, common fabrication methods, and the relationship between the structure and electrochemical properties in LIBs and SIBs. Finally, the prospects of porous microscale alloys are discussed to provide guidance for future research and the commercial development of anode materials for LIBs and SIBs.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Recent Developments in Alloying-type Anode Materials for Potassium-Ion Batteries
    Xu, Yanan
    Zhang, Jianmin
    Li, Dan
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (11) : 1648 - 1659
  • [2] Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries
    Wei, Zengxi
    Wang, Lei
    Zhuo, Ming
    Ni, Wei
    Wang, Hongxia
    Ma, Jianmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (26) : 12185 - 12214
  • [3] Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries
    Imtiaz, Sumair
    Amiinu, Ibrahim Saana
    Xu, Yang
    Kennedy, Tadhg
    Blackman, Chris
    Ryan, Kevin M.
    MATERIALS TODAY, 2021, 48 : 241 - 269
  • [4] High-performance anode materials for Na-ion batteries
    Cheng, De-Liang
    Yang, Li-Chun
    Zhu, Min
    RARE METALS, 2018, 37 (03) : 167 - 180
  • [5] High-performance anode materials for Na-ion batteries
    De-Liang Cheng
    Li-Chun Yang
    Min Zhu
    Rare Metals, 2018, 37 : 167 - 180
  • [6] High-performance anode materials for Na-ion batteries
    De-Liang Cheng
    Li-Chun Yang
    Min Zhu
    Rare Metals, 2018, 37 (03) : 167 - 180
  • [7] Fluorinated Materials as Positive Electrodes for Li- and Na-Ion Batteries
    Lemoine, Kevin
    Hemon-Ribaud, Annie
    Leblanc, Marc
    Lhoste, Jerome
    Tarascon, Jean-Marie
    Maisonneuve, Vincent
    CHEMICAL REVIEWS, 2022, 122 (18) : 14405 - 14439
  • [8] MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries
    Wu, Kuan
    Zhan, Jing
    Xu, Gang
    Zhang, Chen
    Pan, Dengyu
    Wu, Minghong
    NANOSCALE, 2018, 10 (34) : 16040 - 16049
  • [9] Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries
    Xu, Huajun
    Fan, Jiaxing
    Pang, Di
    Zheng, Yingying
    Chen, Gang
    Du, Fei
    Gogotsi, Yury
    Dall'Agnese, Yohan
    Gao, Yu
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [10] Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries
    Nam, Ki-Hun
    Chae, Keun Hwa
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    CHEMICAL ENGINEERING JOURNAL, 2021, 417