共 50 条
Sums of Averages of GCD-Sum Functions II
被引:1
|作者:
Kaltenboeck, Lisa
[1
]
Kiuchi, Isao
[2
]
Eddin, Sumaia Saad
[1
]
Ueda, Masaaki
[2
]
机构:
[1] Johannes Kepler Univ Linz, Inst Financial Math & Appl Number Theory, Altenbergerstr 69, A-4040 Linz, Austria
[2] Yamaguchi Univ, Dept Math Sci, Fac Sci, Yoshida 1677-1, Yamaguchi 7538512, Japan
关键词:
GCD-sum functions;
the Euler totient function;
the Dedekind function;
the Dirichlet divisor problem;
The Riemann Hypothesis;
Simple zeros of the Riemann zeta-function;
11A25;
11N37;
D O I:
10.1007/s00025-021-01357-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let gcd(k,j) denote the greatest common divisor of the integers k and j, and let r be any fixed positive integer. Define Mr(x;f):= Sigma k <= x1kr+1 Sigma j=1k jrf(gcd(j,k))for any large real number x >= 5, where f is any arithmetical function. Let phi, and psi denote the Euler totient and the Dedekind function, respectively. In this paper, we refine asymptotic expansions of Mr(x;id), Mr(x;phi) and Mr(x;psi). Furthermore, under the Riemann Hypothesis and the simplicity of zeros of the Riemann zeta-function, we establish the asymptotic formula of Mr(x;id) for any large positive number x>5 satisfying x=[x]+<mml:mfrac>12</mml:mfrac>.
引用
收藏
页数:17
相关论文