Velocity distribution in granular gases of viscoelastic particles

被引:49
|
作者
Brilliantov, NV
Pöschel, T
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
[2] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119899, Russia
关键词
D O I
10.1103/PhysRevE.61.5573
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity distribution does not scale with the mean square velocity as in the case of particles interacting via a constant restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically. For the case of small dissipation we detected two regimes of evolution of the velocity distribution function: Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds to the temperature relaxation. For larger values of the dissipation parameter there appears an additional intermediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a numerical analysis.
引用
收藏
页码:5573 / 5587
页数:15
相关论文
共 50 条
  • [1] Hydrodynamics of granular gases of viscoelastic particles
    Brilliantov, NV
    Pöschel, T
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792): : 415 - 428
  • [2] Brownian motion in granular gases of viscoelastic particles
    Bodrova, A. S.
    Brilliantov, N. V.
    Loskutov, A. Yu.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 109 (06) : 946 - 953
  • [3] Brownian motion in granular gases of viscoelastic particles
    A. S. Bodrova
    N. V. Brilliantov
    A. Yu. Loskutov
    [J]. Journal of Experimental and Theoretical Physics, 2009, 109 : 946 - 953
  • [4] Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles
    Dubey, Awadhesh Kumar
    Bodrova, Anna
    Puri, Sanjay
    Brilliantov, Nikolai
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [5] Velocity distribution of driven granular gases
    Prasad, V. V.
    Das, Dibyendu
    Sabhapandit, Sanjib
    Rajesh, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [6] Influence of the Driving Velocity on the Local Velocity Distribution of Granular Gases
    Chen, Yanpei
    Evesque, Pierre
    Hou, Meiying
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 475 - 479
  • [7] Velocity distribution of fluidized granular gases in the presence of gravity
    Brey, JJ
    Ruiz-Montero, MJ
    [J]. PHYSICAL REVIEW E, 2003, 67 (02):
  • [8] Breakdown of the Sonine expansion for the velocity distribution of granular gases
    Brilliantov, NV
    Pöschel, T
    [J]. EUROPHYSICS LETTERS, 2006, 74 (03): : 424 - 430
  • [9] Aging in velocity autocorrelations in granular gas of viscoelastic particles in two dimensions
    Kumari, Shikha
    Ahmad, Syed Rashid
    [J]. PARTICULATE SCIENCE AND TECHNOLOGY, 2018, 36 (04) : 427 - 431
  • [10] On the velocity distributions of granular gases
    Polito, A. M. M.
    Rocha Filho, T. M.
    Figueiredo, A.
    [J]. PHYSICS LETTERS A, 2009, 374 (01) : 13 - 17