Evaluation of machine learning models as decision aids for anesthesiologists

被引:0
|
作者
Velagapudi, Mihir [1 ]
Nair, Akira A. [2 ]
Strodtbeck, Wyndam [3 ]
Flynn, David N. [4 ]
Howell, Keith [5 ]
Liberman, Justin S. [3 ]
Strunk, Joseph D. [3 ]
Horibe, Mayumi [6 ]
Nair, Bala G. [7 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA USA
[2] Brown Univ, Providence, RI 02912 USA
[3] Virginia Mason Franciscan Hlth, Seattle, WA USA
[4] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
[5] Univ Florida, Gainesville, FL USA
[6] VA Puget Sound Hlth Syst, Seattle, WA USA
[7] Univ Washington, Seattle, WA 98195 USA
来源
ANESTHESIA AND ANALGESIA | 2021年 / 132卷 / 5S_SUPPL期
关键词
D O I
暂无
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
11
引用
收藏
页码:1015 / 1015
页数:1
相关论文
共 50 条
  • [1] Evaluation of machine learning models as decision aids for anesthesiologists
    Velagapudi, Mihir
    Nair, Akira A.
    Strodtbeck, Wyndam
    Flynn, David N.
    Howell, Keith
    Liberman, Justin S.
    Strunk, Joseph D.
    Horibe, Mayumi
    Harika, Ricky
    Alamdari, Ava
    Hembrador, Sheena
    Kantamneni, Sowmya
    Nair, Bala G.
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2023, 37 (01) : 155 - 163
  • [2] Evaluation of machine learning models as decision aids for anesthesiologists
    Mihir Velagapudi
    Akira A. Nair
    Wyndam Strodtbeck
    David N. Flynn
    Keith Howell
    Justin S. Liberman
    Joseph D. Strunk
    Mayumi Horibe
    Ricky Harika
    Ava Alamdari
    Sheena Hembrador
    Sowmya Kantamneni
    Bala G. Nair
    Journal of Clinical Monitoring and Computing, 2023, 37 : 155 - 163
  • [3] Application of interpretable machine learning models for the intelligent decision
    Li, Yawen
    Yang, Liu
    Yang, Bohan
    Wang, Ning
    Wu, Tian
    NEUROCOMPUTING, 2019, 333 : 273 - 283
  • [4] ANALYZING DECISION BEHAVIOR - LEARNING-MODELS AND LEARNING STYLES AS DIAGNOSTIC AIDS
    JERVIS, P
    PERSONNEL REVIEW, 1983, 12 (02) : 26 - 38
  • [5] The Skyline of Counterfactual Explanations for Machine Learning Decision Models
    Wang, Yongjie
    Ding, Qinxu
    Wang, Ke
    Liu, Yue
    Wu, Xingyu
    Wang, Jinglong
    Liu, Yong
    Miao, Chunyan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2030 - 2039
  • [6] DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
    Cheng, Furui
    Ming, Yao
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1438 - 1447
  • [7] Evaluation of decision-tree models of machine learning for the prediction of acute liver failure after resuscitation
    Luckscheiter, A.
    Zink, W.
    Thiel, M.
    Viergutz, T.
    ANASTHESIOLOGIE & INTENSIVMEDIZIN, 2022, 63 : 350 - 361
  • [8] Learning aspects of decision aids
    Olson, DL
    Mechitov, A
    Moshkovich, H
    MULTIPLE CRITERIA DECISION MAKING IN THE NEW MILLENNIUM, 2001, 507 : 41 - 48
  • [9] Evaluation structures for machine learning models in geotechnical engineering
    Bozorgzadeh, Nezam
    Feng, Yu
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2024, 18 (01) : 52 - 59
  • [10] Systematic Evaluation of Privacy Risks of Machine Learning Models
    Song, Liwei
    Mittal, Prateek
    PROCEEDINGS OF THE 30TH USENIX SECURITY SYMPOSIUM, 2021, : 2615 - 2632