Tensor Laplacian Regularized Low-Rank Representation for Non-Uniformly Distributed Data Subspace Clustering

被引:3
|
作者
Mehrbani, Eysan [1 ]
Kahaei, Mohammad H. [1 ]
Shirazi, Ali Asghar Beheshti [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Elect Engn, Tehran 1684613114, Iran
关键词
Tensors; Optimization; Image reconstruction; Laplace equations; Data structures; Geometry; Data models; Clustering; low rank; hypergraphs; tensors; ALGORITHM;
D O I
10.1109/LSP.2021.3129686
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-Rank Representation (LRR) suffers from discarding the locality information of data points in subspace clustering. We propose a hypergraph-based model by incorporation of a variable number of adjacent nodes, locality information, and sparsity of subspaces. An optimization problem is defined and solved by developing a tensor Laplacian-based algorithm.The outperformance of the proposed method is substantial when the inherent structure of the data exploits severe nonlinearity, geometrical overlapping, and outliers.
引用
收藏
页码:612 / 616
页数:5
相关论文
共 50 条
  • [1] Laplacian regularized deep low-rank subspace clustering network
    Yongyong Chen
    Lei Cheng
    Zhongyun Hua
    Shuang Yi
    [J]. Applied Intelligence, 2023, 53 : 22282 - 22296
  • [2] Laplacian regularized deep low-rank subspace clustering network
    Chen, Yongyong
    Cheng, Lei
    Hua, Zhongyun
    Yi, Shuang
    [J]. APPLIED INTELLIGENCE, 2023, 53 (19) : 22282 - 22296
  • [3] Low-Rank Regularized Heterogeneous Tensor Decomposition for Subspace Clustering
    Zhang, Jing
    Li, Xinhui
    Jing, Peiguang
    Liu, Jing
    Su, Yuting
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 333 - 337
  • [4] Distributed Low-rank Tensor Subspace Clustering Algorithm
    Liu X.
    Pan G.
    Yi M.
    Li Z.
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2019, 47 (08): : 77 - 83and95
  • [5] Laplacian regularized low-rank representation for cancer samples clustering
    Wang, Juan
    Liu, Jin-Xing
    Kong, Xiang-Zhen
    Yuan, Sha-Sha
    Dai, Ling-Yun
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 78 : 504 - 509
  • [6] Tensor subspace clustering using consensus tensor low-rank representation
    Cai, Bing
    Lu, Gui-Fu
    [J]. INFORMATION SCIENCES, 2022, 609 : 46 - 59
  • [7] Hyper-Laplacian regularized multi-view subspace clustering with low-rank tensor constraint
    Lu, Gui-Fu
    Yu, Qin-Ru
    Wang, Yong
    Tang, Ganyi
    [J]. NEURAL NETWORKS, 2020, 125 : 214 - 223
  • [8] Low-Rank Regularized Heterogeneous Tensor Decomposition Algorithm for Subspace Clustering
    Zhang Jing
    Fu Jianpeng
    Li Xinhui
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (07)
  • [9] Hyper-Laplacian Regularized Nonconvex Low-Rank Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zhang, Linna
    Cen, Yigang
    Voronin, Viacheslav
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 376 - 388
  • [10] Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering
    Yin, Ming
    Gao, Junbin
    Lin, Zhouchen
    Shi, Qinfeng
    Guo, Yi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4918 - 4933