An operator-valued T(1) theorem for symmetric singular integrals in UMD spaces

被引:0
|
作者
Hytonen, Tuomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68,Pietari Kalmin Katu 5, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Calderon-Zygmund operator; T(1) theorem; Operator-valued; UMD;
D O I
10.1016/j.jfa.2021.108933
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The natural BMO (bounded mean oscillation) conditions suggested by scalar-valued results are known to be insufficient for the boundedness of operator-valued paraproducts. Accordingly, the boundedness of operator-valued singular integrals has only been available under versions of the classical "T(1) is an element of BMO" assumptions that are not easily checkable. Recently, Hong, Liu and Mei (J. Funct. Anal. 2020) observed that the situation improves remarkably for singular integrals with a symmetry assumption, so that a classical T(1) criterion still guarantees their L-2-boundedness on Hilbert space -valued functions. Here, these results are extended to general UMD (unconditional martingale differences) spaces with the same natural BMO condition for symmetrised paraproducts, and requiring in addition only the usual replacement of uniform bounds by R-bounds in the case of general singular integrals. In particular, under these assumptions, we obtain boundedness results on non-commutative L-P spaces for all 1 < p < infinity, without the need to replace the domain or the target by a related non-commutative Hardy space as in the results of Hong et al. for p not equal 2. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On operator-valued cosine sequences on UMD spaces
    Chojnacki, Wojciech
    STUDIA MATHEMATICA, 2010, 199 (03) : 267 - 278
  • [2] Singular convolution integrals with operator-valued kernel
    Hytonen, Tuomas
    Weis, Lutz
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (02) : 393 - 425
  • [3] Singular convolution integrals with operator-valued kernel
    Tuomas Hytönen
    Lutz Weis
    Mathematische Zeitschrift, 2007, 255 : 393 - 425
  • [4] Operator-valued dyadic shifts and the T(1) theorem
    Hanninen, Timo S.
    Hytonen, Tuomas P.
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (02): : 213 - 253
  • [5] Operator-valued dyadic shifts and the T(1) theorem
    Timo S. Hänninen
    Tuomas P. Hytönen
    Monatshefte für Mathematik, 2016, 180 : 213 - 253
  • [6] An operator-valued T1 theory for symmetric CZOs
    Hong, Guixiang
    Liu, Honghai
    Mei, Tao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (07)
  • [7] OPERATOR-VALUED STOCHASTIC INTEGRALS
    KUO, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 207 - 210
  • [8] Symbol calculus for singular integrals with operator-valued PQC-coefficients
    Ehrhardt, T
    Roch, S
    Silbermann, B
    SINGULAR INTEGRAL OPERATORS AND RELATED TOPICS, 1996, 90 : 182 - 203
  • [9] A T1 theorem for integral transformations with operator-valued kernel
    Hytonen, Tuomas
    Weis, Lutz
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 599 : 155 - 200
  • [10] An operator-valued Lyapunov theorem
    Plosker, Sarah
    Ramsey, Christopher
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 117 - 125