The Degree Sequence of Random Graphs from Subcritical Classes

被引:16
|
作者
Bernasconi, Nicla [1 ]
Panagiotou, Konstantinos [1 ]
Steger, Angelika [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
来源
COMBINATORICS PROBABILITY & COMPUTING | 2009年 / 18卷 / 05期
关键词
RANDOM GENERATION;
D O I
10.1017/S0963548309990368
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we determine the expected number of vertices of degree k = k(n) in a graph with n vertices that is drawn uniformly at random from a subcritical graph class. Examples of such classes are outerplanar, series-parallel, cactus and clique graphs. Moreover, we provide exponentially small bounds for the probability that the quantities in question deviate from their expected values.
引用
下载
收藏
页码:647 / 681
页数:35
相关论文
共 50 条
  • [1] Largest component of subcritical random graphs with given degree sequence*
    Coulson, Matthew
    Perarnau, Guillem
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28 : 1 - 28
  • [2] SCALING LIMITS OF RANDOM GRAPHS FROM SUBCRITICAL CLASSES
    Panagiotou, Konstantinos
    Stufler, Benedikt
    Weller, Kerstin
    ANNALS OF PROBABILITY, 2016, 44 (05): : 3291 - 3334
  • [3] RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE
    Chatterjee, Sourav
    Diaconis, Persi
    Sly, Allan
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (04): : 1400 - 1435
  • [4] DEGREE SEQUENCE OF RANDOM PERMUTATION GRAPHS
    Bhattacharya, Bhaswar B.
    Mukherjee, Sumit
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (01): : 439 - 484
  • [5] Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph
    Liebenau, Anita
    Wormald, Nick
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 1 - 40
  • [6] PERCOLATION ON RANDOM GRAPHS WITH A FIXED DEGREE SEQUENCE
    Fountoulakis, Nikolaos
    Joos, Felix
    Perarnau, Guillem
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 1 - 46
  • [7] Random Hyperbolic Graphs: Degree Sequence and Clustering
    Gugelmann, Luca
    Panagiotou, Konstantinos
    Peter, Ueli
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012, PT II, 2012, 7392 : 573 - 585
  • [8] Convergence law for random graphs with specified degree sequence
    Lynch, JF
    18TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2003, : 301 - 310
  • [9] HAMILTON CYCLES IN RANDOM GRAPHS WITH A FIXED DEGREE SEQUENCE
    Cooper, Colin
    Frieze, Alan
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 558 - 569
  • [10] On the chromatic number of random graphs with a fixed degree sequence
    Frieze, Alan
    Krivelevich, Michael
    Smyth, Cliff
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (05): : 733 - 746