Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain

被引:10
|
作者
Liu, Yujie [1 ]
Chen, Qiaomin [1 ,2 ]
Tan, Qinghua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; Nitrogen fertilization; Wheat yields; Water use efficiency; The North China plain; WINTER-WHEAT; CERES-WHEAT; CROP YIELD; MANAGEMENT; TRENDS; TEMPERATURE; PHENOLOGY; MODELS; IMPACT; PRECIPITATION;
D O I
10.1007/s12571-019-00976-1
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Ensuring food security for the 1.4 billion people of China is a critical challenge, and therefore the accurate assessment of crop yield responses to climate change is a key scientific issue. However, the extent to which the variation in crop growth can be accounted for by the variability in climate variables or by management adaptations remains unclear. Based on daily weather data and management information at six stations, we constructed three sets of simulation experiments using the Crop Environment Resource Synthesis (CERES)-Wheat model. This allowed quantifying the responses of wheat yield and water use efficiency (yield/evapotranspiration, WUE) to climate change and nitrogen (N) fertilization for the period 1981 to 2008 in the North China Plain. Our results indicated that the simulated median values of the wheat yield/WUE decreased (2.62% to 14.26%)/(1.58% to 9.33%) with increasing temperature (T), increased (0.17% to 6.81%)/(0.70% to 4.55%) with elevated CO2 concentration, and changed little with decreasing precipitation in 15 simulation experiments of individual climate variables. Under the combined changes in temperature, N fertilization (T/N), and CO2 concentration, the effects of changes in T/N fertilization on wheat yields and WUE were stronger than the effects of change in CO2 concentration. Interactions between T and CO2 concentration, N fertilization and CO2 concentration appear to play very significant roles in wheat yield. Our study suggests that proper N fertilizer application, changing crop establishment dates, and cultivating new cultivars could be efficient measures for food production prediction and climate change adaptation in the North China Plain. A main result of this work is therefore that proper N application, shifts in crop establishment dates, and the cultivation of new high-temperature tolerant wheat cultivars could contribute safeguarding food security in China, and globally.
引用
收藏
页码:1231 / 1242
页数:12
相关论文
共 50 条
  • [1] Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain
    Yujie Liu
    Qiaomin Chen
    Qinghua Tan
    [J]. Food Security, 2019, 11 : 1231 - 1242
  • [2] Responses of crop yield and water use efficiency to climate change in the North China Plain
    Guo, Ruiping
    Lin, Zhonghui
    Mo, Xingguo
    Yang, Chunlin
    [J]. AGRICULTURAL WATER MANAGEMENT, 2010, 97 (08) : 1185 - 1194
  • [3] Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain
    Rashid, Muhammad Adil
    Jabloun, Mohamed
    Andersen, Mathias Neumann
    Zhang, Xiying
    Olesen, Jorgen Eivind
    [J]. AGRICULTURAL WATER MANAGEMENT, 2019, 222 : 193 - 203
  • [4] Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios
    Xiao, Dengpan
    Liu, De Li
    Wang, Bin
    Feng, Puyu
    Bai, Huizi
    Tang, Jianzhao
    [J]. AGRICULTURAL WATER MANAGEMENT, 2020, 238
  • [5] Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain
    Mo, Xingguo
    Liu, Suxia
    Lin, Zhonghui
    Guo, Ruiping
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2009, 134 (1-2) : 67 - 78
  • [6] The Economic Impact of Climate Change on Wheat and Maize Yields in the North China Plain
    Song, Chunxiao
    Huang, Xiao
    Les, Oxley
    Ma, Hengyun
    Liu, Ruifeng
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (09)
  • [7] Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain
    ZHANG Ming-ming
    DONG Bao-di
    QIAO Yun-zhou
    SHI Chang-hai
    YANG Hong
    WANG Ya-kai
    LIU Meng-yu
    [J]. Journal of Integrative Agriculture, 2018, 17 (05) : 1194 - 1206
  • [8] Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain
    Zhang Ming-ming
    Dong Bao-di
    Qiao Yun-zhou
    Shi Chang-hai
    Yang Hong
    Wang Ya-kai
    Liu Meng-yu
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (05) : 1194 - 1206
  • [9] Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain
    Kan, Zheng-Rong
    Liu, Qiu-Yue
    He, Cong
    Jing, Zhen-Huan
    Virk, Ahmad Latif
    Qi, Jian-Ying
    Zhao, Xin
    Zhang, Hai-Lin
    [J]. FIELD CROPS RESEARCH, 2020, 249
  • [10] Canopy water use efficiency of winter wheat in the North China Plain
    Zhao, Feng-Hua
    Yu, Gui-Rui
    Li, Sheng-Gong
    Ren, Chuan-You
    Sun, Xiao-Min
    Mi, Na
    Li, Jun
    Ouyang, Zhu
    [J]. AGRICULTURAL WATER MANAGEMENT, 2007, 93 (03) : 99 - 108