Nonnegative Matrix Factorization of DCE-MRI for Prostate Cancer Classification

被引:1
|
作者
Hou, Aijie [1 ]
Peng, Yahui [1 ]
Li, Xinchun [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 1, Guangzhou, Peoples R China
关键词
dynamic contrast-enhanced magnetic resonance imaging; nonnegative matrix factorization; prostate cancer; curve sharpness;
D O I
10.1117/12.2604770
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The purpose of the study is to analyze whether certain components can be extracted in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the classification of prostate cancer (PCa). Nonnegative matrix factorization (NMF) was used to extract the characteristic curve from DCE-MRI. The peak sharpness of the characteristic curve was evaluated to classify prostates with and without PCa. Results showed that the peak sharpness of the characteristic curve was significantly different in prostates with and without PCa (p = 0.008) and the area under the receiver operating characteristic curve was 0.86 +/- 0.08. We conclude that the NMF can decompose DCE-MRI into components and the peak sharpness of the characteristic curve has the promise to classify prostates with and without PCa accurately.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [2] Discriminant nonnegative matrix factorization for classification of rectal bleeding in prostate cancer radiotherapy
    Liu, L. H.
    Kachenoura, A.
    Fargeas, A.
    Drean, G.
    Lafond, C.
    De Crevoisier, R.
    Acosta, O.
    Albera, L.
    [J]. IRBM, 2015, 36 (06) : 355 - 360
  • [3] Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer
    Chatterjee, Aritrick
    He, Dianning
    Fan, Xiaobing
    Wang, Shiyang
    Szasz, Teodora
    Yousuf, Ambereen
    Pineda, Federico
    Antic, Tatjana
    Mathew, Melvy
    Karczmar, Gregory S.
    Oto, Aytekin
    [J]. ACADEMIC RADIOLOGY, 2018, 25 (03) : 349 - 358
  • [4] DCE-MRI Data Analysis for Cancer Area Classification
    Castellani, U.
    Cristani, M.
    Daducci, A.
    Farace, P.
    Marzola, P.
    Murino, V.
    Sbarbati, A.
    [J]. METHODS OF INFORMATION IN MEDICINE, 2009, 48 (03) : 248 - 253
  • [5] A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer
    Fan, Ming
    Yuan, Wei
    Liu, Weifen
    Gao, Xin
    Xu, Maosheng
    Wang, Shiwei
    Li, Lihua
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [6] Automatic Detection and Quantitative DCE-MRI Scoring of Prostate Cancer Aggressiveness
    Parra, Nestor Andres
    Pollack, Alan
    Chinea, Felix M.
    Abramowitz, Matthew C.
    Marples, Brian
    Munera, Felipe
    Castillo, Rosa
    Kryvenko, Oleksandr N.
    Punnen, Sanoj
    Stoyanova, Radka
    [J]. FRONTIERS IN ONCOLOGY, 2017, 7
  • [7] Revisiting DCE-MRI Classification of Prostate Tissue Using Descriptive Signal Enhancement Features Derived From DCE-MRI Acquisition With High Spatiotemporal Resolution
    Breit, Hanns C.
    Block, Tobias K.
    Winkel, David J.
    Gehweiler, Julian E.
    Glessgen, Carl G.
    Seifert, Helge
    Wetterauer, Christian
    Boll, Daniel T.
    Heye, Tobias J.
    [J]. INVESTIGATIVE RADIOLOGY, 2021, 56 (09) : 553 - 562
  • [8] A comparison of arterial spin labeling perfusion MRI and DCE-MRI in human prostate cancer
    Cai, Wenchao
    Li, Feiyu
    Wang, Jing
    Du, Huarui
    Wang, Xiaoying
    Zhang, Jue
    Fang, Jing
    Jiang, Xuexiang
    [J]. NMR IN BIOMEDICINE, 2014, 27 (07) : 817 - 825
  • [9] Feasibility of shutter-speed DCE-MRI for improved prostate cancer detection
    Li, Xin
    Priest, Ryan A.
    Woodward, William J.
    Tagge, Ian J.
    Siddiqui, Faisal
    Huang, Wei
    Rooney, William D.
    Beer, Tomasz M.
    Garzotto, Mark G.
    Springer, Charles S., Jr.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (01) : 171 - 178
  • [10] DCE-MRI for Delineation of Hypoxic Regions in Prostate Tumors
    Stoyanova, R.
    Ackerstaff, E.
    Cho, H.
    Koutcher, J. A.
    Pollack, A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (03): : S337 - S337