Dependent uncertain ordered weighted aggregation operators

被引:150
|
作者
Xu, Zeshui [1 ]
机构
[1] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
uncertain ordered weighted averaging (UOWA) operator; dependent uncertain ordered weighted averaging (DUOWA) operator; dependent uncertain ordered weighted geometric (DUOWG) operator;
D O I
10.1016/j.inffus.2006.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Xu and Da [Z.S. Xu, Q.L. Da, The uncertain OWA operator, International Journal of Intelligent Systems, 17 (2002) 569-575] introduced the uncertain ordered weighted averaging (UOWA) operator to aggregate the input arguments taking the form of intervals rather than exact numbers. In this paper, we develop some dependent uncertain ordered weighted aggregation operators, including dependent uncertain ordered weighted averaging (DUOWA) operators and dependent uncertain ordered weighted geometric (DUOWG) operators, in which the associated weights only depend on the aggregated interval arguments and can relieve the influence of unfair interval arguments on the aggregated results by assigning low weights to those "false" and "biased" ones. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 50 条
  • [1] Variance measures with ordered weighted aggregation operators
    Verma, Rajkumar
    Merigo, Jose M.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2019, 34 (06) : 1184 - 1205
  • [2] Covariance in Ordered Weighted Logarithm Aggregation Operators
    Perez-Romero, Miriam Edith
    Alfaro-Garcia, Victor G.
    Merigo, Jose M.
    Flores-Romero, Martha Beatriz
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 36 - 41
  • [3] Induced Aggregation Operators in the Ordered Weighted Average Sum
    Merigo, Jose M.
    Alrajeh, Nabil
    Peris-Ortiz, Marta
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [4] Induced Generalized Ordered Weighted Logarithmic Aggregation Operators
    Alfaro-Garcia, Victor G.
    Gil-Lafuente, Anna M.
    Merigo, Jose M.
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [5] Ordered weighted averaging operators for basic uncertain information granules
    Jin, LeSheng
    Chen, Zhen-Song
    Yager, Ronald R.
    Senapati, Tapan
    Mesiar, Radko
    Zamora, Diego Garcia
    Dutta, Bapi
    Martinez, Luis
    [J]. INFORMATION SCIENCES, 2023, 645
  • [6] Ordered weighted geometric averaging operators for basic uncertain information
    Jin, Lesheng
    Mesiar, Radko
    Senapati, Tapan
    Jana, Chiranjibe
    Ma, Chao
    Garcia-Zamora, Diego
    Yager, Ronald R.
    [J]. INFORMATION SCIENCES, 2024, 663
  • [7] Generalized Ordered Weighted Reference Dependent Utility Aggregation Operators and Their Applications to Group Decision-Making
    Jianwei Gao
    Huihui Liu
    [J]. Group Decision and Negotiation, 2017, 26 : 1173 - 1207
  • [8] Generalized Ordered Weighted Reference Dependent Utility Aggregation Operators and Their Applications to Group Decision-Making
    Gao, Jianwei
    Liu, Huihui
    [J]. GROUP DECISION AND NEGOTIATION, 2017, 26 (06) : 1173 - 1207
  • [9] FUZZY AGGREGATION OF MODULAR NEURAL NETWORKS WITH ORDERED WEIGHTED AVERAGING OPERATORS
    CHO, SB
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1995, 13 (04) : 359 - 375
  • [10] ON ORDERED WEIGHTED AVERAGING AGGREGATION OPERATORS IN MULTICRITERIA DECISION-MAKING
    YAGER, RR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1988, 18 (01): : 183 - 190