Fast hyperspectral anomaly detection via SVDD

被引:0
|
作者
Banerjee, Amit [1 ]
Burlina, Philippe [1 ]
Meth, Reuven [2 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] SET Corp, Greenbelt, MD 20770 USA
关键词
hyperspectral imaging; anomaly detection; real-time hyperspectral processing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method for fast anomaly detection in hyperspectral imagery (HSI) based on the Support Vector Data Description (SVDD) algorithm. The SVDD is a single class, non-parametric approach for modeling the support of a distribution. A global SVDD anomaly detector is developed that utilizes the SVDD to model the distribution of the spectra of pixels randomly selected from the entire image. Experiments on Wide Area Airborne Mine Detection (WAAMD) hyperspectral data show improved Receiver Operating Characteristic (ROC) detection performance when compared to the local SVDD detector and other standard anomaly detectors (including RX and GMRF). Furthermore, one-second processing time using desktop computers on several 256x256x145 datacubes is achieved.
引用
收藏
页码:1797 / +
页数:2
相关论文
共 50 条
  • [1] A RFS-SVDD algorithm for hyperspectral global anomaly detection
    Chen, De-Rong
    Gong, Jiu-Lu
    He, Guang-Lin
    Cao, Xu-Ping
    [J]. Yuhang Xuebao/Journal of Astronautics, 2010, 31 (01): : 228 - 232
  • [2] Anomaly Detection in Hyperspectral Image Based on SVDD Combined with Features Compression
    Ma, Ping
    Yao, Chengfei
    Li, Yang
    Ma, Jingang
    [J]. 2021 5TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE (ICIAI 2021), 2021, : 103 - 107
  • [3] Effective training set sampling strategy for SVDD anomaly detection in hyperspectral imagery
    Ergul, Mustafa
    Sen, Nigar
    Okman, O. Erman
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
  • [5] Fast hyperspectral anomaly detection for environmental applications
    Zare-Baghbidi, Mohsen
    Homayouni, Saeid
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [6] HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION
    Li, Fang
    Song, Meiping
    Chang, Chein-, I
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2324 - 2327
  • [7] Hyperspectral Anomaly Detection via Anchor Generation
    Mi, Yang
    Tu, Bing
    Chen, Yunyun
    Cao, Zhaolou
    Plaza, Antonio
    [J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73
  • [8] Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction
    Ning Huyan
    Zhang, Xiangrong
    Zhou, Huiyu
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2263 - 2276
  • [9] Anomaly Detection of Hyperspectral Image via Tensor Completion
    Wang, Jingxuan
    Xia, Yong
    Zhang, Yanning
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1099 - 1103
  • [10] Anomaly Detection in Hyperspectral Images via Regularization by Denoising
    Brandao Junior, Mauro Luiz
    Lima, Victor Carneiro
    Pereira Teixeira, Thomas Antonio Portugal
    de Lima, Eduardo Rodrigues
    Lopes, Renato da Rocha
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8256 - 8265