L2-Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmannmanifold SU(r, r plus b)/S(U(r) x U(r plus b))

被引:0
|
作者
Boussejra, Abdelhamid [1 ]
Imesmad, Noureddine [1 ]
Chaib, Achraf Ouald [1 ]
机构
[1] Univ Ibn Tofail, Fac Sci, Dept Math, Kenitra, Morocco
关键词
Strichartz conjecture; Poisson transform; Fourier restriction estimate; Asymptotic expansion for the Poisson transform; L-P-RANGE; POISSON TRANSFORM; SYMMETRIC-SPACES; EIGENFUNCTIONS; THEOREM;
D O I
10.1007/s10455-021-09819-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E-l = G x(K) C be the associated homogeneous line bundle to a one-dimensional K-representation tau(l) (l is an element of Z) over the noncompact complex Grassmann manifold G/ K; G = SU(r, r + b) and K = S(U(r) x U(r + b)). Let D(E-l) be the algebra of G-invariant differential operators on E-l. Let lambda be a real and regular spectral parameter in a*, and let F be a solution of the system differential equations on E-l: DF = chi(lambda, l) (D)F for all D in D(E-l). In this article, we obtain a necessary and sufficient condition for this F to be represented by the Poisson transform of f in the section space L-2(K x(M) C).
引用
收藏
页码:399 / 426
页数:28
相关论文
共 30 条