Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ ∼ 11.8 μm*

被引:3
|
作者
Wang, Huan [1 ,2 ]
Zhang, Jin-Chuan [1 ]
Cheng, Feng-Min [1 ,3 ]
Gu, Zeng-Hui [1 ,3 ]
Zhuo, Ning [1 ]
Zhai, Shen-Qiang [1 ]
Liu, Feng-Qi [1 ,2 ,3 ]
Liu, Jun-Qi [1 ,2 ]
Liu, Shu-Man [1 ,2 ]
Wang, Zhan-Guo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing Key Lab Low Dimens Semicond Mat & Devices, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
dual-upper-state (DAU); quantum cascade lasers; external cavity; gas detection;
D O I
10.1088/1674-1056/abf91a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a broad gain, continuous-wave (CW) operation InP-based quantum cascade laser (QCL) emitting at 11.8 mu m with a modified dual-upper-state (DAU) and diagonal transition active region design. A 3 mm cavity length, 16.5 mu m average ridge wide QCL with high-reflection (HR) coatings demonstrates a maximum peak power of 1.07 W at 283 K and CW output power of 60 mW at 293 K. The device also shows a broad and dual-frequency lasing spectrum in pulsed mode and a maximum average power of 258.6 mW at 283 K. Moreover, the full width at half maximum (FWHM) of the electroluminescent spectrum measured at subthreshold current is 2.37 mu m, which indicates a broad gain spectrum of the materials. The tuning range of 1.38 mu m is obtained by a grating-coupled external cavity (EC) Littrow configuration, which is beneficial for gas detection.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
    王欢
    张锦川
    程凤敏
    顾增辉
    卓宁
    翟慎强
    刘峰奇
    刘俊岐
    刘舒曼
    王占国
    [J]. Chinese Physics B, 2021, 30 (12) : 396 - 400
  • [2] Continuous-wave operation of quantum cascade laser emitting near 5.6 μm
    Yarekha, DA
    Beck, M
    Blaser, S
    Aellen, T
    Gini, E
    Hofstetter, D
    Faist, J
    [J]. ELECTRONICS LETTERS, 2003, 39 (15) : 1123 - 1125
  • [3] High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers
    Bandyopadhyay, N.
    Slivken, S.
    Bai, Y.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [4] Continuous-wave operation quantum cascade lasers at 7.95 μm
    Xu, GY
    Li, AZ
    Zhang, YG
    Li, H
    [J]. JOURNAL OF CRYSTAL GROWTH, 2005, 278 (1-4) : 780 - 784
  • [5] Continuous-wave operation of all-epitaxial InP-based 1.3 μm VCSELs with 57% differential quantum efficiency
    Feezell, D
    Buell, DA
    Coldren, LA
    [J]. ELECTRONICS LETTERS, 2005, 41 (14) : 803 - 804
  • [6] Continuous-wave operation of a 5.2 μm quantum-cascade laser up to 210 K
    Ishaug, B
    Hwang, WY
    Um, J
    Guo, BJ
    Lee, H
    Lin, CH
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (12) : 1745 - 1747
  • [7] High performance continuous-wave InP-based 2.1 μm superluminescent diode with InGaAsSb quantum well
    Zhang, Jinchuan
    Wang, Dongbo
    Gu, Zenghui
    Zhao, Yue
    Zhuo, Ning
    Liu, Junqi
    Liu, Fengqi
    [J]. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,
  • [8] 2.4μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature
    Gu, Yi
    Zhang, Yonggang
    Cao, Yuanying
    Zhou, Li
    Chen, Xingyou
    Li, Haosibaiyin
    Xi, Suping
    [J]. APPLIED PHYSICS EXPRESS, 2014, 7 (03)
  • [9] Low-Threshold Continuous-Wave Operation of Distributed-Feedback Quantum Cascade Laser at λ ∼ 4.6 μm
    Zhang, Jinchuan
    Wang, Lijun
    Tan, Song
    Liu, Wanfeng
    Zhao, Lihua
    Liu, Fengqi
    Liu, Junqi
    Li, Lu
    Wang, Zhanguo
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (18) : 1334 - 1336
  • [10] High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature
    Yu, JS
    Slivken, S
    Evans, A
    Doris, L
    Razeghi, M
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (13) : 2503 - 2505