A Description Logic based QSTR Framework for Recognizing Motion Patterns from Spatio-temporal Data

被引:0
|
作者
Talukdar, Upasana [1 ]
Barua, Rupam [2 ]
Hazarika, Shyamanta M. [1 ]
机构
[1] Tezpur Univ, Biomimet & Cognit Robot Lab, Tezpur, Assam, India
[2] Jorhat Engn Coll, Dept Comp Sci & Engn, Jorhat, Assam, India
关键词
Qualitative Spatio-temporal Reasoning; Spatio-temporal; Description Logic; Motion Patterns;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning patterns from spatio-temporal data streams is an important problem within Artificial Intelligence. Knowledge is important for recognition of patterns. Representation of large and diverse knowledge requires formal basis. Description Logics (DLs) constitute a family of knowledge representation formalism which provide object-oriented representation with formal semantics. Qualitative spatial and temporal reasoning (QSTR) encompass efforts devoted to providing useful and well-grounded models to be used as high level qualitative descriptions of spatio-temporal change. In this paper we combine DL with QSTR and put forward a formal, explicit knowledge representation formalism for representation of motion patterns. Reasoning services of the DL system is used for recognizing motion patterns from spatio-temporal data.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [1] A framework for mining sequential patterns from spatio-temporal event data sets
    Huang, Yan
    Zhang, Liqin
    Zhang, Pusheng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (04) : 433 - 448
  • [2] Segmenting visual actions based on spatio-temporal motion patterns
    Rui, Y
    Anandan, P
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL I, 2000, : 111 - 118
  • [3] Spatio-Temporal UML Modeling and Verifying with Description Logic
    Zhang, Fu
    Cao, Dong-Xia
    Cheng, Jing-Wei
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2019, 35 (06) : 1279 - 1298
  • [4] Recognizing Human Actions by Using Spatio-temporal Motion Descriptors
    Utasi, Akos
    Kovacs, Andrea
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PT II, 2010, 6475 : 366 - 375
  • [5] Recognizing Compound Events in Spatio-Temporal Football Data
    Richly, Keven
    Bothe, Max
    Rohloff, Tobias
    Schwarz, Christian
    [J]. IOTBD: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND BIG DATA, 2016, : 27 - 35
  • [6] Knowledge-based Spatio-Temporal Data Mining Framework
    Xu, Wei
    Jing, Liping
    [J]. PROCEEDINGS OF 2010 CROSS-STRAIT CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY, 2010, : 386 - 389
  • [7] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [8] Methodologies of mining anomaly patterns from spatio-temporal Data
    Shi Y.
    [J]. Shi, Yan (whu_shiy@126.com), 1600, SinoMaps Press (45): : 1386
  • [9] RECOGNIZING HUMAN ACTIONS BY FUSING SPATIO-TEMPORAL APPEARANCE AND MOTION DESCRIPTORS
    Ballan, Lamberto
    Bertini, Marco
    Del Bimbo, Alberto
    Seidenari, Lorenzo
    Serra, Giuseppe
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3569 - 3572
  • [10] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    [J]. MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198