Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative

被引:50
|
作者
Halilaj, E. [1 ]
Le, Y. [2 ]
Hicks, J. L. [1 ]
Hastie, T. J. [2 ]
Delp, S. L. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Orthopaed Surg, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Knee osteoarthritis; Disease progression; Functional data clustering; Predictive modeling; SYMPTOMATIC KNEE OSTEOARTHRITIS; JOINT SPACE WIDTH; RADIOGRAPHIC FEATURES; PAIN TRAJECTORIES; HIP; ASSOCIATION; COHORT; RISK; OA;
D O I
10.1016/j.joca.2018.08.003
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: The goal of this study was to model the longitudinal progression of knee osteoarthritis (OA) and build a prognostic tool that uses data collected in 1 year to predict disease progression over 8 years. Design: To model OA progression, we used a mixed-effects mixture model and 8-year data from the Osteoarthritis Initiative (OAI) dspecifically, joint space width measurements from X-rays and pain scores from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire. We included 1243 subjects who at enrollment were classified as being at high risk of developing OA based on age, body mass index (BMI), and medical and occupational histories. After clustering subjects based on radiographic and pain progression, we used clinical variables collected within the first year to build least absolute shrinkage and selection (LASSO) regression models for predicting the probabilities of belonging to each cluster. Areas under the receiver operating characteristic curve (AUC) represent predictive performance on held-out data. Results: Based on joint space narrowing, subjects clustered as progressing or non-progressing. Based on pain scores, they clustered as stable, improving, or worsening. Radiographic progression could be predicted with high accuracy (AUC = .86) using data from two visits spanning 1 year, whereas pain progression could be predicted with high accuracy (AUC = .95) using data from a single visit. Joint space narrowing and pain progression were not associated. Conclusion: Statistical models for characterizing and predicting OA progression promise to improve clinical trial design and OA prevention efforts in the future. (c) 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1643 / 1650
页数:8
相关论文
共 50 条
  • [1] Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Xu, Chang
    Marchand, Nathalie E.
    Driban, Jeffrey B.
    McAlindon, Timothy
    Eaton, Charles B.
    Lu, Bing
    [J]. AMERICAN JOURNAL OF CLINICAL NUTRITION, 2020, 111 (03): : 667 - 676
  • [2] Periarticular bone predicts knee osteoarthritis progression: Data from the Osteoarthritis Initiative
    Lo, Grace H.
    Schneider, Erika
    Driban, Jeffrey B.
    Price, Lori Lyn
    Hunter, David J.
    Eaton, Charles B.
    Hochberg, Marc C.
    Jackson, Rebecca D.
    Kwoh, C. Kent
    Nevitt, Michael C.
    Lynch, John A.
    McAlindon, Timothy E.
    [J]. SEMINARS IN ARTHRITIS AND RHEUMATISM, 2018, 48 (02) : 155 - 161
  • [3] DIETARY FAT INTAKE AND KNEE OSTEOARTHRITIS PROGRESSION: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Eaton, C. B.
    Driban, J. B.
    Yang, S.
    Lu, B.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2014, 22 : S207 - S207
  • [4] DIETARY PATTERNS AND SYMPTOMATIC PROGRESSION OF KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Xu, C.
    Roberts, M.
    Driban, J.
    McAlindon, T.
    Eaton, C.
    Lu, B.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S264 - S265
  • [5] Dietary Patterns and Symptomatic Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Xu, Chang
    Marchand, Nathalie
    Driban, Jeffrey
    McAlindon, Timothy
    Eaton, Charles
    Lu, Bing
    [J]. ARTHRITIS & RHEUMATOLOGY, 2019, 71
  • [6] Dietary Patterns and Radiographic Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Lu, Bing
    Driban, Jeffrey
    Xu, Chang
    McAlindon, Timothy E.
    Eaton, Charles B.
    [J]. ARTHRITIS & RHEUMATOLOGY, 2016, 68
  • [7] Defining and predicting radiographic knee osteoarthritis progression: a systematic review of findings from the osteoarthritis initiative
    Joo, Peter Y.
    Borjali, Alireza
    Chen, Antonia F.
    Muratoglu, Orhun K.
    Varadarajan, Kartik M.
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2022, 30 (12) : 4015 - 4028
  • [8] Defining and predicting radiographic knee osteoarthritis progression: a systematic review of findings from the osteoarthritis initiative
    Peter Y. Joo
    Alireza Borjali
    Antonia F. Chen
    Orhun K. Muratoglu
    Kartik M. Varadarajan
    [J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30 : 4015 - 4028
  • [9] Depressive symptoms and structural disease progression in knee osteoarthritis: data from the Osteoarthritis Initiative
    Rathbun, Alan M.
    Yau, Michelle S.
    Shardell, Michelle
    Stuart, Elizabeth A.
    Hochberg, Marc C.
    [J]. CLINICAL RHEUMATOLOGY, 2017, 36 (01) : 155 - 163
  • [10] Association of Knee Injuries With Accelerated Knee Osteoarthritis Progression: Data From the Osteoarthritis Initiative
    Driban, Jeffrey B.
    Eaton, Charles B.
    Lo, Grace H.
    Ward, Robert J.
    Lu, Bing
    McAlindon, Timothy E.
    [J]. ARTHRITIS CARE & RESEARCH, 2014, 66 (11) : 1673 - 1679