Uniqueness and reconstruction for the fractional Calderon problem with a single measurement

被引:50
|
作者
Ghosh, Tuhin [1 ]
Rueland, Angkana [2 ]
Salo, Mikko [3 ]
Uhlmann, Gunther [1 ,4 ]
机构
[1] HKUST, Jockey Club Inst Adv Study, Hong Kong, Peoples R China
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[3] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[4] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
欧洲研究理事会; 芬兰科学院;
关键词
Inverse problems; Calderon problem; Fractional Laplacian; Unique continuation; Single measurement; CONTINUATION; EQUATIONS; DOMAINS;
D O I
10.1016/j.jfa.2020.108505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show global uniqueness in the fractional Calderon problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work [10] considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] ON SINGLE MEASUREMENT STABILITY FOR THE FRACTIONAL CALDERON PROBLEM
    Rueland, Angkana
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) : 5094 - 5113
  • [2] THE CALDERON PROBLEM FOR THE FRACTIONAL WAVE EQUATION: UNIQUENESS AND OPTIMAL STABILITY
    Kow, Pu-Zhao
    Lin, Yi-Hsuan
    Wang, Jenn-Nan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3379 - 3419
  • [3] The Calderon problem for conormal potentials - I: Global uniqueness and reconstruction
    Greenleaf, A
    Lassas, M
    Uhlmann, G
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (03) : 328 - 352
  • [4] The higher order fractional Calderon problem for linear local operators: Uniqueness
    Covi, Giovanni
    Monkkonen, Keijo
    Railo, Jesse
    Uhlmann, Gunther
    ADVANCES IN MATHEMATICS, 2022, 399
  • [5] On the uniqueness and reconstruction for an inverse problem of the fractional diffusion process
    Liu, J. J.
    Yamamoto, M.
    Yan, L.
    APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 1 - 19
  • [6] The uniqueness of inverse problems for a fractional equation with a single measurement
    Kian, Yavar
    Li, Zhiyuan
    Liu, Yikan
    Yamamoto, Masahiro
    MATHEMATISCHE ANNALEN, 2021, 380 (3-4) : 1465 - 1495
  • [7] Reconstruction of a Singular Source in a Fractional Subdiffusion Problem from a Single Point Measurement
    Hrizi, M.
    Hajji, F.
    Prakash, R.
    Novotny, A. A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [8] The uniqueness of inverse problems for a fractional equation with a single measurement
    Yavar Kian
    Zhiyuan Li
    Yikan Liu
    Masahiro Yamamoto
    Mathematische Annalen, 2021, 380 : 1465 - 1495
  • [9] GLOBAL UNIQUENESS FOR THE CALDERON PROBLEM WITH LIPSCHITZ CONDUCTIVITIES
    Caro, Pedro
    Rogers, Keith M.
    FORUM OF MATHEMATICS PI, 2016, 4 : 1 - 28
  • [10] Uniqueness in the Calderon problem and bilinear restriction estimates
    Ham, Seheon
    Kwon, Yehyun
    Lee, Sanghyuk
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (08)