Exploring the Limits of Machine Learning in the Prediction of Solar Radiation

被引:0
|
作者
Scabbia, Giovanni [1 ]
Sanfilippo, Antonio [1 ]
Perez-Astudillo, Daniel [1 ]
Bachour, Dunia [1 ]
Fountoukis, Christos [1 ]
机构
[1] HBKU, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
关键词
Solar radiation forecasting; Autoregressive modeling; Machine learning; Differencing; FORECASTING METHODS; IRRADIANCE; POWER; MODEL;
D O I
10.1007/978-3-030-76081-6_46
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Predicting solar radiation at diverse time horizons is crucial for optimizing solar energy integration, ensuring grid stability, and regulating energy markets. Two main levels of time granularity are usually recognized as requiring different treatment: solar nowcasting for predictions up to 6 h, and solar forecasting for predictions beyond 6 h. Solar nowcasting typically relies on machine learning methods, while Numerical Weather Prediction (NWP) models are considered better suited for solar forecasting. The goal of this study was to explore the limits of machine learning in solar forecasting. Our results show that machine learning methods can be profitably used for predicting solar radiation beyond 6 h, with comparable performances to NWP models for day-ahead solar forecasting.
引用
收藏
页码:381 / 384
页数:4
相关论文
共 50 条
  • [1] Solar Radiation Prediction Using Machine Learning Techniques
    Caycedo Villalobos, Luis Alejandro
    Cortazar Forero, Richard Alexander
    Cano Perdomo, Pedro Miguel
    Gonzalez Veloza, Jose John Fredy
    [J]. APPLIED INFORMATICS (ICAI 2021), 2021, 1455 : 68 - 81
  • [2] Machine learning for high-performance solar radiation prediction
    Tanoli, Irfan Khan
    Mehdi, Asqar
    Algarni, Abeer D.
    Fazal, Azra
    Khan, Talha Ahmed
    Ahmad, Sadique
    Ateya, Abdelhamied A.
    [J]. Energy Reports, 2024, 12 : 4794 - 4804
  • [3] Solar Radiation Prediction Using Machine Learning Techniques: A Review
    Obando, E.
    Carvajal, S.
    Pineda, J.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (04) : 684 - 697
  • [4] Solar Radiation Prediction on Photovoltaic Systems Using Machine Learning Techniques
    Ordonez-Palacios, Luis-Eduardo
    Leon-Vargas, Daniel-Andres
    Bucheli-Guerrero, Victor-Andres
    Ordonez-Eraso, Hugo-Armando
    [J]. REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2020, 29 (54):
  • [5] Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces
    Hedar, Abdel-Rahman
    Almaraashi, Majid
    Abdel-Hakim, Alaa E.
    Abdulrahim, Mahmoud
    [J]. ENERGIES, 2021, 14 (23)
  • [6] An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction
    Chaibi, Mohamed
    Benghoulam, El Mahjoub
    Tarik, Lhoussaine
    Berrada, Mohamed
    El Hmaidi, Abdellah
    [J]. ENERGIES, 2021, 14 (21)
  • [7] Potential of Machine Learning Based Support Vector Regression for Solar Radiation Prediction
    Mohamed, Zahraa E.
    Saleh, Hussein H.
    [J]. COMPUTER JOURNAL, 2023, 66 (02): : 399 - 415
  • [8] A review on global solar radiation prediction with machine learning models in a comprehensive perspective
    Zhou, Yong
    Liu, Yanfeng
    Wang, Dengjia
    Liu, Xiaojun
    Wang, Yingying
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2021, 235
  • [9] Limits of Prediction for Machine Learning in Drug Discovery
    von Korff, Modest
    Sander, Thomas
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [10] Solar Radiation Forecast with Machine Learning
    Shao, Xiaoyan
    Lu, Siyuan
    Hamann, Hendrik F.
    [J]. 2016 23RD INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2016, : 19 - 22