Clustering a union of low-rank subspaces of different dimensions with missing data

被引:11
|
作者
Ashraphijuo, Morteza [1 ]
Wang, Xiaodong [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Subspace clustering; Low-rank matrix completion; Union of subspaces; DETERMINISTIC SAMPLING PATTERNS;
D O I
10.1016/j.patrec.2018.12.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive fundamental conditions for clustering a union of low-rank subspaces with missing data. In particular, given an incomplete matrix, assuming its columns are drawn from K different subspaces with different dimensions, the subspace clustering problem is to cluster the columns that belong to the same subspace. We derive a lower bound on the number of columns from each subspace such that the columns can be clustered correctly with high probability. The analysis focuses on the subspace with the lowest dimension and is a generalization of the corresponding results in [18] that assumes the subspaces are independent and with the same dimension. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [1] Union of low-rank subspaces detector
    Joneidi, Mohsen
    Ahmadi, Parvin
    Sadeghi, Mostafa
    Rahnavard, Nazanin
    [J]. IET SIGNAL PROCESSING, 2016, 10 (01) : 55 - 62
  • [2] Matched Detection in Union of Low-rank Subspaces
    Joneidi, M.
    Sadeghi, M.
    Ahmadi, P.
    Golestani, H. B.
    Ghanbari, M.
    [J]. 2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2014, : 371 - 374
  • [3] Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-Rank Matrix
    Pei Chen
    [J]. International Journal of Computer Vision, 2008, 80 : 125 - 142
  • [4] Optimization algorithms on subspaces: Revisiting missing data problem in low-rank matrix
    Chen, Pei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 80 (01) : 125 - 142
  • [5] Structured alternating minimization for union of nested low-rank subspaces data completion
    Ashraphijuo M.
    Wang X.
    [J]. IEEE Journal on Selected Areas in Information Theory, 2020, 1 (03): : 632 - 644
  • [6] Union of low-rank tensor spaces: Clustering and completion
    Ashraphijuo, Morteza
    Wang, Xiaodong
    [J]. Journal of Machine Learning Research, 2020, 21
  • [7] Union of Low-Rank Tensor Spaces: Clustering and Completion
    Ashraphijuo, Morteza
    Wang, Xiaodong
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [8] Low-Rank Subspaces in GANs
    Zhu, Jiapeng
    Feng, Ruili
    Shen, Yujun
    Zhao, Deli
    Zha, Zheng-Jun
    Zhou, Jingren
    Chen, Qifeng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] STRUCTURED LOW-RANK APPROXIMATION WITH MISSING DATA
    Markovsky, Ivan
    Usevich, Konstantin
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 814 - 830
  • [10] Fundamental conditions on the sampling pattern for union of low-rank subspaces retrieval
    Ashraphijuo, Morteza
    Wang, Xiaodong
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2019, 87 (04) : 373 - 393