Improved distributed degree splitting and edge coloring

被引:0
|
作者
Ghaffari, Mohsen [1 ]
Hirvonen, Juho [2 ]
Kuhn, Fabian [3 ]
Maus, Yannic [3 ]
Suomela, Jukka [2 ]
Uitto, Jara [1 ,3 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Aalto Univ, Helsinki, Finland
[3] Univ Freiburg, Freiburg, Germany
基金
欧洲研究理事会;
关键词
Distributed graph algorithms; Degree splitting; Edge coloring; Discrepancy; ALGORITHMS; COMPLEXITY;
D O I
10.1007/s00446-018-00346-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The degree splitting problem requires coloring the edges of a graph red or blue such that each node has almost the same number of edges in each color, up to a small additive discrepancy. The directed variant of the problem requires orienting the edges such that each node has almost the same number of incoming and outgoing edges, again up to a small additive discrepancy. We present deterministic distributed algorithms for both variants, which improve on their counterparts presented by Ghaffari and Su (Proc SODA 2017:2505-2523, 2017): our algorithms are significantly simpler and faster, and have a much smaller discrepancy. This also leads to a faster and simpler deterministic algorithm for (2+o(1))Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+o(1))\varDelta $$\end{document}-edge-coloring, improving on that of Ghaffari and Su.
引用
收藏
页码:293 / 310
页数:18
相关论文
共 50 条
  • [1] Improved distributed degree splitting and edge coloring
    Ghaffari, Mohsen
    Hirvonen, Juho
    Kuhn, Fabian
    Maus, Yannic
    Suomela, Jukka
    Uitto, Jara
    [J]. Leibniz International Proceedings in Informatics, LIPIcs, 2017, 91
  • [2] Improved distributed degree splitting and edge coloring
    Mohsen Ghaffari
    Juho Hirvonen
    Fabian Kuhn
    Yannic Maus
    Jukka Suomela
    Jara Uitto
    [J]. Distributed Computing, 2020, 33 : 293 - 310
  • [3] Distributed Degree Splitting, Edge Coloring, and Orientations
    Ghaffari, Mohsen
    Su, Hsin-Hao
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2505 - 2523
  • [4] Improved distributed Δ-coloring
    Ghaffari, Mohsen
    Hirvonen, Juho
    Kuhn, Fabian
    Maus, Yannic
    [J]. DISTRIBUTED COMPUTING, 2021, 34 (04) : 239 - 258
  • [5] Improved Distributed Algorithms for the Lovász Local Lemma and Edge Coloring
    Davies, Peter
    [J]. arXiv, 2022,
  • [6] Distributed Edge Coloring in Time Polylogarithmic in Δ
    Balliu, Alkida
    Brandt, Sebastian
    Kuhn, Fabian
    Olivetti, Dennis
    [J]. PROCEEDINGS OF THE 2022 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, PODC 2022, 2022, : 15 - 25
  • [7] Edge coloring graphs with large minimum degree
    Plantholt, Michael J.
    Shan, Songling
    [J]. JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 611 - 632
  • [8] Edge coloring regular graphs of high degree
    Perkovic, L
    Reed, B
    [J]. DISCRETE MATHEMATICS, 1997, 165 : 567 - 578
  • [9] ON STAR COLORING OF DEGREE SPLITTING OF COMB PRODUCT GRAPHS
    Subramanian, Ulagammal
    Joseph, Vernold Vivin
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 507 - 522
  • [10] ON STAR COLORING OF DEGREE SPLITTING OF CARTESIAN PRODUCT GRAPHS
    Ulagammal, S.
    Vivin, Vernold J.
    Cangul, Ismail Naci
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (02): : 243 - 254