Robust SRIF-based LiDAR-IMU Localization for Autonomous Vehicles

被引:3
|
作者
Li, Kun [1 ]
Ouyang, Zhanpeng [2 ]
Hu, Lan [2 ]
Hao, Dayang [1 ]
Kneip, Laurent [2 ,3 ]
机构
[1] Alibaba Grp, Damo Acad, Hangzhou, Peoples R China
[2] ShanghaiTech, Mobile Percept Lab, SIST, Shanghai, Peoples R China
[3] Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
基金
上海市自然科学基金;
关键词
SLAM; GPS;
D O I
10.1109/ICRA48506.2021.9561218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a tightly-coupled multi-sensor fusion architecture for autonomous vehicle applications, which achieves centimetre-level accuracy and high robustness in various scenarios. In order to realize robust and accurate point-cloud feature matching we propose a novel method for extracting structural, highly discriminative features from LiDAR point clouds. For high frequency motion prediction and noise propagation, we use incremental on-manifold IMU pre-integration. We also adopt a multi-frame sliding window square root inverse filter, so that the system maintains numerically stable results under the premise of limited power consumption. To verify our methodology, we test the fusion algorithm in multiple applications and platforms equipped with a LiDAR-IMU system. Our results demonstrate that our fusion framework attains state-of-the-art localization accuracy, high robustness and a good generalization ability.
引用
收藏
页码:5381 / 5387
页数:7
相关论文
共 50 条
  • [1] Lidar-IMU and Wheel Odometer Based Autonomous Vehicle Localization System
    Zhang, Shaojiang
    Guo, Yanning
    Zhu, Qiang
    Liu, Zhiyuan
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4950 - 4955
  • [2] A Robust LiDAR-IMU Joint Calibration Method
    Wang L.
    Xiang Z.
    [J]. Jiqiren/Robot, 2023, 45 (03): : 267 - 275
  • [3] A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles
    Meng, Xiaoli
    Wang, Heng
    Liu, Bingbing
    [J]. SENSORS, 2017, 17 (09):
  • [4] A robust data-model dual-driven fusion with uncertainty estimation for LiDAR-IMU localization system
    Li, Qipeng
    Zhuang, Yuan
    Huai, Jianzhu
    Wang, Xuan
    Wang, Binliang
    Cao, Yue
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 210 : 128 - 140
  • [5] Lightweight LiDAR-IMU odometry based on improved Kalman filter
    Luo, Fanrui
    Liu, Zhenyu
    Ren, Jiahui
    Li, Xiaoyu
    Cheng, Yang
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (11): : 2280 - 2289
  • [6] AFLI-Calib: Robust LiDAR-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry
    Wu, Weitong
    Li, Jianping
    Chen, Chi
    Yang, Bisheng
    Zou, Xianghong
    Yang, Yandi
    Xu, Yuhang
    Zhong, Ruofei
    Chen, Ruibo
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 157 - 181
  • [7] Tightly Coupled SLAM Algorithm Based on Similarity Detection Using LiDAR-IMU Sensor Fusion for Autonomous Navigation
    Zheng, Jiahui
    Wang, Yi
    Men, Yadong
    [J]. World Electric Vehicle Journal, 2024, 15 (12)
  • [8] LiDAR-based robust localization for field autonomous vehicles in off-road environments
    Ren, Ruike
    Fu, Hao
    Xue, Hanzhang
    Li, Xiaohui
    Hu, Xiaochang
    Wu, Meiping
    [J]. JOURNAL OF FIELD ROBOTICS, 2021, 38 (08) : 1059 - 1077
  • [9] Highly Robust Two-stage LiDAR-IMU External Parameter Online Calibration Algorithm
    Lin X.
    Zhang J.
    Feng J.
    Meng J.
    Wang S.
    [J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (24): : 2980 - 2989
  • [10] Range Image-based LiDAR Localization for Autonomous Vehicles
    Chen, Xieyuanli
    Vizzo, Ignacio
    Labe, Thomas
    Behley, Jens
    Stachniss, Cyrill
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5802 - 5808