Quantum Hall states as matrix Chern-Simons theory

被引:0
|
作者
Polychronakos, AP [1 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] Rockefeller Univ, Dept Phys, New York, NY 10021 USA
来源
关键词
Chern-Simons theories; non-commutative geometry; m(atrix) theories; anyons;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a finite Chern-Simons matrix model on the plane as an effective description of fractional quantum Hall fluids of finite extent. The quantization of the inverse filling fraction and of the quasiparticle number is shown to arise quantum mechanically and to agree with Laughlin theory. We also point out the effective equivalence of this model, and therefore of the quantum Hall system, with the Calogero model.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Quantum Hall states on the cylinder as unitary matrix Chern-Simons theory
    Polychronakos, AP
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (06):
  • [2] Chern-Simons theory of multicomponent quantum Hall systems
    Beugeling, W.
    Goerbig, M. O.
    Smith, C. Morais
    [J]. PHYSICAL REVIEW B, 2010, 81 (19):
  • [3] Entanglement for quantum Hall states and a generalized Chern-Simons form
    Nair, V. P.
    [J]. PHYSICAL REVIEW D, 2020, 101 (12):
  • [4] Quantum hall stripes: Chern-Simons theory and orientational mechanisms
    Rosenow, B
    Scheidl, S
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (13): : 1905 - 1914
  • [5] Quantum wires, Chern-Simons theory, and dualities in the quantum Hall system
    Toledo, Julio
    Jusinskas, Renann Lipinski
    Hernaski, Carlos A.
    Gomes, Pedro R. S.
    [J]. PHYSICAL REVIEW B, 2022, 106 (07)
  • [6] Supersymmetric Chern-Simons theory and supersymmetric quantum Hall liquid
    Hasebe, Kazuki
    [J]. PHYSICAL REVIEW D, 2006, 74 (04):
  • [7] QUANTUM CHERN-SIMONS THEORY
    KILLINGBACK, TP
    [J]. PHYSICS LETTERS B, 1989, 219 (04) : 448 - 456
  • [8] Dualities in quantum Hall system and noncommutative Chern-Simons theory
    Gorsky, A
    Kogan, II
    Korthals-Altes, C
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2002, (01):
  • [9] The matrix Chern-Simons one-form as a Universal Chern-Simons theory
    Nair, V. P.
    [J]. NUCLEAR PHYSICS B, 2006, 750 (03) : 289 - 320
  • [10] Chern-Simons duality and the quantum Hall effect
    Balachandran, AP
    Chandar, L
    Sathiapalan, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (19): : 3587 - 3608