Matrices over non-commutative rings as sums of powers

被引:1
|
作者
Katre, S. A. [1 ]
Krishnamurthi, Deepa [2 ]
机构
[1] Savitribai Phule Pune Univ, Pune, Maharashtra, India
[2] St Miras Coll Girls, Pune, Maharashtra, India
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 05期
关键词
Matrices; non-commutative rings; trace; sums of powers; Waring's problem;
D O I
10.1080/03081087.2020.1748856
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be non-commutative ring with unity and n >= p >= 2, p prime. In this paper, we prove that an n x n matrix over R is the sum of pth powers if and only if its trace can be written as a sum of pth powers and commutators modulo pR. This extends the results of L. N. Vaserstein (p = 2) and S. A. Katre, Kshipra Wadikar (p = 3). We also obtain necessary and sufficient conditions for a matrix over R to be written as a sum of fourth powers when n >= 2.
引用
收藏
页码:824 / 829
页数:6
相关论文
共 50 条
  • [1] Matrices over commutative rings as sums of higher powers
    Muangma, Kunlathida
    Rodtes, Kijti
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (02): : 296 - 324
  • [2] Matrices over commutative rings as sums of fifth and seventh powers of matrices
    Garge, Anuradha S.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (12): : 2220 - 2227
  • [3] MATRICES OVER COMMUTATIVE RINGS AS SUMS OF k-TH POWERS
    Katre, S. A.
    Garge, Anuradha S.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (01) : 103 - 113
  • [4] Matrices over noncommutative rings as sums of kth powers
    Katre, S. A.
    Wadikar, Kshipra
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2050 - 2058
  • [5] MONOID ALGEBRAS OVER NON-COMMUTATIVE RINGS
    Cojuhari, E. P.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 2 : 28 - 53
  • [6] Multiplication modules over non-commutative rings
    Tuganbaev, AA
    [J]. SBORNIK MATHEMATICS, 2003, 194 (11-12) : 1837 - 1864
  • [7] Artinian-finitary groups over commutative rings and non-commutative rings
    Wehrfritz, BAF
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 325 - 340
  • [8] The Hall Matrices over Non-commutative Inclines
    Zhang, Guoyong
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 429 - 432
  • [9] Graded Prime Submodules over Non-Commutative Rings
    Abu-Dawwas R.
    Bataineh M.
    Al-Muanger M.
    [J]. Vietnam Journal of Mathematics, 2018, 46 (3) : 681 - 692
  • [10] Finitary automorphism groups over non-commutative rings
    Wehrfritz, BAF
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 611 - 623