On the Discretization of Truncated Integro-Differential Sweeping Process and Optimal Control

被引:12
|
作者
Bouach, Abderrahim [1 ]
Haddad, Tahar [1 ]
Thibault, Lionel [2 ]
机构
[1] Univ Mohammed Seddik Benyahia, Fac Sci Exactes & Informat, Lab LMPEA, BP 98, Jijel 18000, Algeria
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, F-34095 Montpellier 5, France
关键词
Variational analysis; Moreau's sweeping process; Moreau's catching-up algorithm; Volterra integro-differential equation; Differential inclusions; SET;
D O I
10.1007/s10957-021-01991-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the Volterra integro-differential equation with a time-dependent prox-regular constraint that changes in an absolutely continuous way in time (a Volterra absolutely continuous time-dependent sweeping process). The aim of our paper is twofold. The first one is to show the solvability of the initial value problem by setting up an appropriate catching-up algorithm (full discretization). This part is a continuation of our paper (Bouach et al. in arXiv: 2102.11987. 2021) where we used a semi-discretization method. Obviously, strong solutions and convergence of full discretization scheme are desirable properties, especially for numerical simulations. Applications to non-regular electrical circuits are provided. The second aim is to establish the existence of optimal solution to an optimal control problem involving the Volterra integro-differential sweeping process.
引用
收藏
页码:785 / 830
页数:46
相关论文
共 50 条
  • [1] On the Discretization of Truncated Integro-Differential Sweeping Process and Optimal Control
    Abderrahim Bouach
    Tahar Haddad
    Lionel Thibault
    [J]. Journal of Optimization Theory and Applications, 2022, 193 : 785 - 830
  • [2] Optimal control of nonconvex integro-differential sweeping processes
    Bouach, Abderrahim
    Haddad, Tahar
    Mordukhovich, Boris S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 255 - 317
  • [3] NONCONVEX INTEGRO-DIFFERENTIAL SWEEPING PROCESS WITH APPLICATIONS
    Bouach, Abderrahim
    Haddad, Tahar
    Thibault, Lionel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (05) : 2971 - 2995
  • [4] Prox-Regular Integro-Differential Sweeping Process
    Gaouir, Sarra
    Haddad, Tahar
    Thibault, Lionel
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, : 1413 - 1438
  • [5] On the Optimal Control of Volterra Integro-Differential Equations
    Azhmyakov, Vadim
    Egerstedt, Magnus
    Verriest, Erik I.
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 3340 - 3345
  • [6] OPTIMAL STABILITY FUNCTIONALS AND THEIR APPLICATION TO DISCRETIZATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    ANDRADE, C
    MCKEE, S
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (09): : 453 - 455
  • [7] CONVERGENCE OF A DISCRETIZATION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS
    LINZ, P
    [J]. NUMERISCHE MATHEMATIK, 1975, 25 (01) : 103 - 107
  • [8] Existence of optimal control for an integro-differential Bolza problem
    Idczak, Dariusz
    Walczak, Stanislaw
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (05): : 1604 - 1615
  • [9] Optimal control computation for integro-differential aerodynamic equations
    Elnagar, GN
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (07) : 653 - 664
  • [10] Optimal control computation for integro-differential aerodynamic equations
    Univ of South Carolina Spartanburg, Spartanburg, United States
    [J]. Math Methods Appl Sci, 7 (653-664):