Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries

被引:41
|
作者
Guo, Peng [1 ,2 ]
Song, Huaihe [1 ]
Chen, Xiaohong [1 ]
Ma, Lulu [1 ,3 ]
Wang, Guohua [1 ]
Wang, Feng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Key Lab Carbon Fiber & Funct Polymers, Minist Educ, Beijing 100029, Peoples R China
[2] SINOPEC, Beijing Res Inst Chem Ind, Beijing 100013, Peoples R China
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
关键词
Graphene nanosheets; Conducting agent; Cycle performance; Rate performance; AC impedance; MULTIWALLED CARBON NANOTUBES; REVERSIBLE CAPACITY; BLACK DISTRIBUTION; LI STORAGE; GRAPHITE; CATHODES; OXIDE; ELECTRODES; INTERCALATION; STABILITY;
D O I
10.1016/j.aca.2010.12.033
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent-acetylene black. The high-quality sp(2) carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 50 条
  • [1] Electrochemical Performance of Silicon/Graphene Nanocomposites Anode Materials for Lithium-ion Batteries
    Xiao S.
    Xie X.
    Xie Y.
    Liu B.
    Liu D.
    Shi Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (09): : 1327 - 1334
  • [2] Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) : 1320 - 1324
  • [3] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [4] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [5] Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries
    Ni, Chengyuan
    Xia, Chengdong
    Liu, Wenping
    Xu, Wei
    Shan, Zhiqiang
    Lei, Xiaoxu
    Qin, Haiqing
    Tao, Zhendong
    MATERIALS, 2024, 17 (03)
  • [6] Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries
    Lee, Jong-Hyuk
    Lee, Heon-Young
    Oh, Seh-Min
    Lee, Seo-Jae
    Lee, Ki-Young
    Lee, Sung-Man
    JOURNAL OF POWER SOURCES, 2007, 166 (01) : 250 - 254
  • [7] Electrochemical performance of polygonized carbon nanofibers as anode materials for lithium-ion batteries
    Jiang, Jinjin
    Tang, Xiaolin
    Wu, Rui
    Lin, Haoqiang
    Qu, Meizhen
    PARTICUOLOGY, 2013, 11 (04) : 401 - 408
  • [8] Effect of Sn Addition on the Anode of for Lithium-Ion Batteries
    Hirono, Tomoki
    Usui, Hiroyuki
    Domi, Yasuhiro
    Nishida, Takahiro
    Irie, Wataru
    Sawada, Toshiyuki
    Sakaguchi, Hiroki
    ELECTROCHEMISTRY, 2022, 90 (06)
  • [9] Electrochemical performance of polygonized carbon nanofibers as anode materials for lithium-ion batteries
    Jinjin Jiang
    xiaolin Tang
    Rui Wu
    Haoqiang Lin
    Meizhen Qu
    Particuology, 2013, 11 (04) : 401 - 408
  • [10] Enhanced electrochemical performance by GeOx-Coated MXene nanosheet anode in lithium-ion batteries
    Liu, Chenguang
    Zhao, Yinchao
    Yi, Ruowei
    Wu, Hao
    Yang, Wenbin
    Li, Yinqing
    Mitrovic, Ivona
    Taylor, Stephen
    Chalker, Paul
    Liu, Rui
    Yang, Li
    Zhao, Cezhou
    ELECTROCHIMICA ACTA, 2020, 358