NASA's Surface Deformation and Change Mission Study

被引:2
|
作者
Horst, Stephen [1 ]
Chrone, Jonathan [2 ]
Deacon, Shaun [2 ]
Le, Charles [1 ]
Maillard, Adrien [1 ]
Molthan, Andrew [3 ]
Nguyen, Anh [4 ]
Osmanoglu, Batuhan [5 ]
Oveisgharan, Shadi [1 ]
Perrine, Martin [5 ]
Shah, Rashmi [1 ]
Tymofyeyeva, Ekaterina [1 ]
Wells, Christopher [1 ]
Zufall, Adam [4 ]
Rosen, Paul A. [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91107 USA
[2] NASA, Langley Res Ctr, 1 NASA Dr, Hampton, VA 23666 USA
[3] NASA, Marshall Spaceflight Ctr, Martin Rd SW, Huntsville, AL 35808 USA
[4] NASA, Ames Res Ctr, Freeman Ln, Mountain View, CA 94043 USA
[5] NASA, Goddard Spaceflight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
BIOMASS;
D O I
10.1109/AERO50100.2021.9438290
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The National Academies of Science, Engineering and Medicine 2017 Decadal Survey of Earth Science and Applications identified geodetic measurements of surface deformation and related change as one of the top five "observables" to be prioritized in NASA's future program. In response, NASA commissioned a multi-center Surface Deformation and Change (SDC) team to perform a five year study of mission architectures that would support SDC observables and provide the most value to the diverse science and applications communities it serves. The study is being conducted in phases, in which the science and applications capabilities identified in the Decadal Survey are refined, candidate architectures and associated technologies to support these needs are identified, architectures are assessed against a science value framework specific to SDC, and recommendations to NASA are made. Ultimately, NASA will decide which amongst these recommendations will proceed to mission formulation. As synthetic aperture radar (SAR) was identified as the prime sensor technology to satisfy SDC observational needs, a key component of the SDC study is to assess the current state of the art in SAR sensor and supporting technology. The number of SAR systems, both civil and commercial, is growing rapidly, requiring that mission architectures not only consider technology, but availability of data from other missions, possible partnerships or collaborations, and even data purchase. The mechanism for assessment involves development of an end-toend science performance evaluation tool for multi-satellite constellations, which feeds into a science value framework that considers science performance, technological programmatic risks, and cost. This paper will present an overview of the ongoing study including the candidate architectures and the technology road map needed to achieve the objectives of the mission.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Benefit Assessment of Commercial Synthetic Aperture Radar Observations for NASA's Surface Deformation and Change Mission Study
    Osmanoglu, B.
    Huang, S. A.
    Jones, C. A.
    Scheuchl, B.
    Khazendar, A.
    Sauber, J.
    Tymofyeyeva, K.
    Jo, M. J.
    [J]. 39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 225 - 232
  • [2] NASA'S NEXT GENERATION SURFACE DEFORMATION AND CHANGE OBSERVING SYSTEM ARCHITECTURE
    Rosen, Paul A.
    Horst, Stephen J.
    Khazendar, Ala
    Milillo, Pietro
    Oveisgharan, Shadi
    Owen, Susan E.
    Osmanoglu, Batuhan
    Sauber-Rosenberg, Jeanne
    Molthan, Andrew
    Case, Kelley
    Jaroux, B. J.
    Hoffman, James L.
    Klovstad, Jordan
    Bawden, Gerald W.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8378 - 8380
  • [3] DEFORMATION OF SMALL ASTEROIDS BY IMPACTS AND IMPLICATIONS FOR NASA'S DART MISSION
    Raducan, S. D.
    Jutzi, M.
    [J]. METEORITICS & PLANETARY SCIENCE, 2022, 57
  • [4] NASA'S PLUTO MISSION
    Neufeld, Michael
    [J]. PHYSICS TODAY, 2016, 69 (04) : 41 - 47
  • [5] NASA's mission reliable
    Regan, P
    Hamilton, S
    [J]. COMPUTER, 2004, 37 (01) : 59 - +
  • [6] ONGOING PROGRESS TOWARD NASA'S SURFACE BIOLOGY AND GEOLOGY MISSION
    Thompson, David R.
    Basilio, Ralph
    Brosnan, Ian
    Cawse-Nicholson, Kerry
    Chadwick, K. Dana
    Guild, Liane
    Gierach, Michelle
    Green, Robert O.
    Hook, Simon
    Horner, Scott D.
    Hulley, Glynn
    Kokaly, Raymond
    Miller, Charles E.
    Miner, Kimberley R.
    Lee, Christine
    Limonadi, Daniel
    Luvall, Jeffrey
    Pavlick, Ryan
    Phillips, Benjamin
    Poulter, Benjamin
    Raiho, Ann
    Reath, Kevin
    Uz, Stephanie Schollaert
    Sen, Amit
    Serbin, Shawn
    Schimel, David
    Townsend, Philip
    Turner, Woody
    Turpie, Kevin
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5007 - 5010
  • [7] NASA's Interstellar Probe Mission
    Liewer, PC
    Mewaldt, RA
    Ayon, JA
    Wallace, RA
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, PTS 1 AND 2, 2000, 504 : 911 - 916
  • [8] MISSION DESIGN FOR NASA'S VAN ALLEN PROBES MISSION
    Siddique, Fazle E.
    Heyler, Gene A.
    [J]. SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 : 3997 - 4011
  • [9] The Ultraviolet Spectrograph on NASA's Juno Mission
    Gladstone, G. Randall
    Persyn, Steven C.
    Eterno, John S.
    Walther, Brandon C.
    Slater, David C.
    Davis, Michael W.
    Versteeg, Maarten H.
    Persson, Kristian B.
    Young, Michael K.
    Dirks, Gregory J.
    Sawka, Anthony O.
    Tumlinson, Jessica
    Sykes, Henry
    Beshears, John
    Rhoad, Cherie L.
    Cravens, James P.
    Winters, Gregory S.
    Klar, Robert A.
    Lockhart, Walter
    Piepgrass, Benjamin M.
    Greathouse, Thomas K.
    Trantham, Bradley J.
    Wilcox, Philip M.
    Jackson, Matthew W.
    Siegmund, Oswald H. W.
    Vallerga, John V.
    Raffanti, Rick
    Martin, Adrian
    Gerard, J. -C.
    Grodent, Denis C.
    Bonfond, Bertrand
    Marquet, Benoit
    Denis, Francois
    [J]. SPACE SCIENCE REVIEWS, 2017, 213 (1-4) : 447 - 473
  • [10] The Ultraviolet Spectrograph on NASA’s Juno Mission
    G. Randall Gladstone
    Steven C. Persyn
    John S. Eterno
    Brandon C. Walther
    David C. Slater
    Michael W. Davis
    Maarten H. Versteeg
    Kristian B. Persson
    Michael K. Young
    Gregory J. Dirks
    Anthony O. Sawka
    Jessica Tumlinson
    Henry Sykes
    John Beshears
    Cherie L. Rhoad
    James P. Cravens
    Gregory S. Winters
    Robert A. Klar
    Walter Lockhart
    Benjamin M. Piepgrass
    Thomas K. Greathouse
    Bradley J. Trantham
    Philip M. Wilcox
    Matthew W. Jackson
    Oswald H. W. Siegmund
    John V. Vallerga
    Rick Raffanti
    Adrian Martin
    J.-C. Gérard
    Denis C. Grodent
    Bertrand Bonfond
    Benoit Marquet
    François Denis
    [J]. Space Science Reviews, 2017, 213 : 447 - 473