A class of mixture models for multidimensional ordinal data

被引:11
|
作者
Colombi, Roberto [1 ]
Giordano, Sabrina [2 ]
机构
[1] Univ Bergamo, Dept Management Informat & Prod Engn, Bergamo, Italy
[2] Univ Calabria, Dept Econ Stat & Finance, Via Bucci,Cubo 0C, I-87030 Cosenza, Italy
关键词
CUB models; Rating survey; Sarmanov distributions; uncertainty; PLACKETT DISTRIBUTION; CUB MODELS; RESPONSES; DISTRIBUTIONS;
D O I
10.1177/1471082X16649730
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In rating surveys, people are requested to express preferences on several aspects related to a topic by selecting a category in an ordered scale. For such data, we propose a model defined by a mixture of a uniform distribution and a Sarmanov distribution with CUB (combination of uniform and shifted binomial) marginal distributions (D'Elia and Piccolo, 2005). This mixture generalizes the CUB model to the multivariate case by taking into account the association among answers of the same individual to the items of a questionnaire. It also allows us to distinguish two kinds of uncertainty: specific uncertainty, related to the indecision for single items, and global uncertainty referred to the respondent's hesitancy in completing the whole questionnaire. A simulation and a real case study highlight the usefulness of the new methodology.
引用
收藏
页码:322 / 340
页数:19
相关论文
共 50 条