Protein self-diffusion in crowded solutions

被引:197
|
作者
Roosen-Runge, Felix [2 ]
Hennig, Marcus [1 ,2 ]
Zhang, Fajun [2 ]
Jacobs, Robert M. J. [3 ]
Sztucki, Michael [4 ]
Schober, Helmut [1 ]
Seydel, Tilo [1 ]
Schreiber, Frank [2 ]
机构
[1] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
[2] Univ Tubingen, Inst Angew Phys, D-72076 Tubingen, Germany
[3] Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England
[4] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France
关键词
macromolecular crowding; quasi-elastic neutron scattering; globular proteins; BOVINE SERUM-ALBUMIN; NEUTRON SPIN-ECHO; ANOMALOUS DIFFUSION; GLOBULAR-PROTEINS; HYDRODYNAMIC INTERACTIONS; HEMOGLOBIN DYNAMICS; CYTOPLASM; HYDRATION; POWDER;
D O I
10.1073/pnas.1107287108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Macromolecular crowding in biological media is an essential factor for cellular function. The interplay of intermolecular interactions at multiple time and length scales governs a fine-tuned system of reaction and transport processes, including particularly protein diffusion as a limiting or driving factor. Using quasielastic neutron backscattering, we probe the protein self-diffusion in crowded aqueous solutions of bovine serum albumin on nanosecond time and nanometer length scales employing the same protein as crowding agent. The measured diffusion coefficient D(phi) strongly decreases with increasing protein volume fraction phi explored within 7% <= phi <= 30%. With an ellipsoidal protein model and an analytical framework involving colloid diffusion theory, we separate the rotational D-r(phi) and translational D-t(phi) contributions to D(phi). The resulting D-t(phi) is described by short-time self-diffusion of effective spheres. Protein self-diffusion at biological volume fractions is found to be slowed down to 20% of the dilute limit solely due to hydrodynamic interactions.
引用
收藏
页码:11815 / 11820
页数:6
相关论文
共 50 条
  • [1] Protein diffusion in crowded electrolyte solutions
    Roosen-Runge, Felix
    Hennig, Marcus
    Seydel, Tilo
    Zhang, Fajun
    Skoda, Maximilian W. A.
    Zorn, Stefan
    Jacobs, Robert M. J.
    Maccarini, Marco
    Fouquet, Peter
    Schreiber, Frank
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (01): : 68 - 75
  • [2] POLYMER SELF-DIFFUSION IN TERNARY SOLUTIONS AND THE MONOMER AND SEGMENTAL SELF-DIFFUSION COEFFICIENTS
    PINDER, DN
    [J]. MACROMOLECULES, 1990, 23 (06) : 1724 - 1729
  • [3] DIFFUSION AND SELF-DIFFUSION IN IDEAL ASSOCIATED SOLUTIONS
    HALL, DG
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1985, 81 (OCT): : 1599 - 1602
  • [4] INTERDIFFUSION AND SELF-DIFFUSION IN UREA SOLUTIONS
    CARMAN, PC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1966, 70 (10): : 3355 - &
  • [5] Self-Diffusion and Viscosity in Electrolyte Solutions
    Kim, Jun Soo
    Wu, Zhe
    Morrow, Andrew R.
    Yethiraj, Anand
    Yethiraj, Arun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (39): : 12007 - 12013
  • [6] THE MEASUREMENT OF SELF-DIFFUSION IN ELECTROLYTE SOLUTIONS
    MILLS, R
    ADAMSON, AW
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1955, 77 (13) : 3454 - 3458
  • [7] ON COUNTERION SELF-DIFFUSION IN MICELLAR SOLUTIONS
    BRATKO, D
    LINDMAN, B
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (08): : 1437 - 1440
  • [8] SELF-DIFFUSION IN BLOCK COPOLYMER SOLUTIONS
    GRINBERG, FA
    SCIRDA, VD
    MAKLAKOV, AI
    ROGOVINA, LZ
    STOROGYK, IP
    [J]. POLYMER, 1987, 28 (07) : 1075 - 1078
  • [9] SELF-DIFFUSION OF TOLUENE IN POLYSTYRENE SOLUTIONS
    PICKUP, S
    BLUM, FD
    [J]. MACROMOLECULES, 1989, 22 (10) : 3961 - 3968
  • [10] SELF-DIFFUSION OF MACROMOLECULES IN POLYSTYRENE SOLUTIONS
    MAKLAKOV, AI
    SEVRYUGIN, VA
    SKIRDA, VD
    FATKULLIN, NF
    [J]. VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1984, 26 (12): : 2502 - 2507