Semantic Cubing Platform enabling Interoperability Analysis among Cloud-based Linked Data Cubes

被引:0
|
作者
Thanh Binh Nguyen [1 ]
Sy Ngoc Ngo [2 ]
机构
[1] IIASA, Schlosspl 1, A-2361 Laxenburg, Austria
[2] Hue Univ, Infomrat Technol Ctr, Hue, Vietnam
关键词
linked data cubes; federated data warehousing systems; semantics; onotology;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In current data marketplace, multidimensional data cubes become isolated bits of information in lack of a comprehensive semantic relationship among their datasets. To facilitate the exploration and discovery possible semantic heterogeneity among linked data cubes, Semantic Cubing Platform has been studied. First, linked data marts and their data cubes have been specified by using the Federated Data warehousing Application (FDWA) framework and the Collective Cubing platform, which have been introduced in our previous literatures. Hereafter, Metacube Services have been proposed as a middle-layer to enable interoperability analysis among linked data cubes.
引用
收藏
页码:547 / 553
页数:7
相关论文
共 50 条
  • [1] A cloud-based platform to ensure interoperability in aerospace industry
    Khalfallah, Malik
    Figay, Nicolas
    Da Silva, Catarina Ferreira
    Ghodous, Parisa
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2016, 27 (01) : 119 - 129
  • [2] A cloud-based platform to ensure interoperability in aerospace industry
    Malik Khalfallah
    Nicolas Figay
    Catarina Ferreira Da Silva
    Parisa Ghodous
    [J]. Journal of Intelligent Manufacturing, 2016, 27 : 119 - 129
  • [3] ENABLING CONTROL SYSTEM AND CLOUD-BASED SIMULATION SERVICE INTEROPERABILITY
    Jones, Albert
    Shao, Guodong
    Riddick, Frank
    [J]. 2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 703 - 714
  • [4] The symbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-based IoT Platforms
    Zarko, Ivana Podnar
    Mueller, Szymon
    Plociennik, Marcin
    Rajtar, Tomasz
    Jacoby, Michael
    Pardi, Matteo
    Insolvibile, Gianluca
    Glykantzis, Vasileios
    Antonic, Aleksandar
    Kusek, Mario
    Soursos, Sergios
    [J]. 2019 GLOBAL IOT SUMMIT (GIOTS), 2019,
  • [5] A Cloud-based Data Platform for Efficient EEG Data Management, Collaboration, and Analysis
    Tian, Qi
    Wu, Wen
    Zhu, Qin
    Cai, Tao
    Jiang, Siyi
    Li, Yaqing
    Zhou, Jinrun
    Zhu, Nan
    Wei, Yina
    Tang, Tao
    Xu, Kedi
    Lin, Feng
    Feng, Linqing
    [J]. 2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1585 - 1592
  • [6] PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis
    Mani, D. R.
    Maynard, Myranda
    Kothadia, Ramani
    Krug, Karsten
    Christianson, Karen E.
    Heiman, David
    Clauser, Karl R.
    Birger, Chet
    Getz, Gad
    Carr, Steven A.
    [J]. NATURE METHODS, 2021, 18 (06) : 580 - 582
  • [7] PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis
    D. R. Mani
    Myranda Maynard
    Ramani Kothadia
    Karsten Krug
    Karen E. Christianson
    David Heiman
    Karl R. Clauser
    Chet Birger
    Gad Getz
    Steven A. Carr
    [J]. Nature Methods, 2021, 18 : 580 - 582
  • [8] Anesthesia decision analysis using a cloud-based big data platform
    Zhang, Shuiting
    Li, Hui
    Jing, Qiancheng
    Shen, Weiyun
    Luo, Wei
    Dai, Ruping
    [J]. EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2024, 29 (01)
  • [9] A Cloud-Based Platform Enabling Automation in Resiliency and Performance Testing of SDN
    Di Martino, Catello
    Walid, Anwar
    Thottan, Marina
    [J]. 2018 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (NFV-SDN), 2018,
  • [10] Evaluation of a novel cloud-based software platform for structured experiment design and linked data analytics
    Hannes Juergens
    Matthijs Niemeijer
    Laura D. Jennings-Antipov
    Robert Mans
    Jack Morel
    Antonius J. A. van Maris
    Jack T. Pronk
    Timothy S. Gardner
    [J]. Scientific Data, 5