Big Data Analytics Frameworks

被引:0
|
作者
Chandarana, Parth [1 ]
Vijayalakshmi, M. [2 ]
机构
[1] VESIT, Bombay, Maharashtra, India
[2] VESIT, Dept Informat Technol, Bombay, Maharashtra, India
关键词
Big Data Analytics; Big Data Issues and Challenges; Apache Hadoop; Apache Drill; Project Storm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Big Data concerns massive, heterogeneous, autonomous sources with distributed and decentralized control. These characteristics make it an extreme challenge for organizations using traditional data management mechanism to store and process these huge datasets. It is required to define a new paradigm and re-evaluate current system to manage and process Big Data. In this paper, the important characteristics, issues and challenges related to Big Data management has been explored. Various open source Big Data analytics frameworks that deal with Big Data analytics workloads have been discussed. Comparative study between the given frameworks and suitability of the same has been proposed.
引用
收藏
页码:430 / 434
页数:5
相关论文
共 50 条
  • [1] A Survey on Big Data Processing Frameworks for Mobility Analytics
    Doulkeridis, Christos
    Vlachou, Akrivi
    Pelekis, Nikos
    Theodoridis, Yannis
    [J]. SIGMOD Record, 2021, 50 (02): : 18 - 29
  • [2] A Survey on Big Data Processing Frameworks for Mobility Analytics
    Doulkeridis, Christos
    Vlachou, Akrivi
    Pelekis, Nikos
    Theodoridis, Yannis
    [J]. SIGMOD RECORD, 2021, 50 (02) : 18 - 30
  • [3] Emergent models, frameworks, and hardware technologies for Big data analytics
    Groppe, Sven
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (03): : 1800 - 1827
  • [4] Implications of big data analytics in developing healthcare frameworks - A review
    Palanisamy, Venketesh
    Thirunavukarasu, Ramkumar
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2019, 31 (04) : 415 - 425
  • [5] Emergent models, frameworks, and hardware technologies for Big data analytics
    Sven Groppe
    [J]. The Journal of Supercomputing, 2020, 76 : 1800 - 1827
  • [6] Open Source Big Data Analytics Frameworks Written in Scala
    Miller, John A.
    Bowman, Casey
    Harish, Vishnu Gowda
    Quinn, Shannon
    [J]. 2016 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2016, 2016, : 389 - 393
  • [7] Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics
    Veiga, Jorge
    Exposito, Roberto R.
    Pardo, Xoan C.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 424 - 431
  • [8] ORiON: Online ResOurce Negotiator for multiple Big Data Analytics frameworks
    Zacheilas, Nikos
    Chalvantzis, Nikolaos
    Konstantinou, Ioannis
    Kalogeraki, Vana
    Koziris, Nectarios
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING (ICAC 2018), 2018, : 11 - 20
  • [9] Spark versus Flink: Understanding Performance in Big Data Analytics Frameworks
    Marcu, Ovidiu-Cristian
    Costan, Alexandra
    Antoniu, Gabriel
    Perez-Hernandez, Maria S.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2016, : 433 - 442
  • [10] Big data analytics frameworks for the influence of gut microbiota on the development of tic disorder
    Fan, Fei
    Bian, Zhaoxiang
    Zhang, Xuan
    Wu, Hongwei
    Wang, Simeng
    Zhang, Si
    Wang, Qiong
    Han, Fei
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16