A new methodology for predicting crack initiation life for rolling contact fatigue based on dislocation and crack propagation

被引:42
|
作者
Liu, C. Richard [2 ]
Choi, Youngsik [1 ]
机构
[1] Florida Inst Technol, Dept Mech & Aerosp Engn, Melbourne, FL 32901 USA
[2] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
关键词
crack initiation life; dislocation model; crack propagation; predicting; testing;
D O I
10.1016/j.ijmecsci.2007.07.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new methodology for predicting crack initiation life is presented and validated experimentally. The methodology considers that the total fatigue life is the summation of crack initiation life and crack propagation life, since fatigue failures are due to crack initiation and crack propagation. It has been established that the crack propagation life can be estimated based on a modified Paris' law when the size of crack is larger than a certain value. However, there has been no verified method for estimating the crack initiation life with good accuracy. The proposed methodology for predicting the crack initiation life is based on a dislocation model, and the constants for the model are determined by the crack initiation lives obtained by a new approach. This new approach determines the crack initiation life by subtracting the predicted crack propagation life from the experimentally obtained total fatigue life. The developed crack initiation life model is combined with a crack propagation life model for the prediction of fatigue life. It is noted that the standard deviation in the ratios of experimental life to predicted life by the developed fatigue life model is only 14% of that by the International Standard. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 123
页数:7
相关论文
共 50 条
  • [1] Life prediction of rolling contact fatigue crack initiation
    Ringsberg, JW
    INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (07) : 575 - 586
  • [2] Numerical procedure for predicting the rolling contact fatigue crack initiation
    Sraml, M
    Flasker, J
    Potrc, I
    INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (07) : 585 - 595
  • [3] Prediction of fatigue crack initiation for rolling contact fatigue
    Ringsberg, JW
    Loo-Moorey, M
    Josefson, BL
    Kapoor, A
    Beynon, JH
    INTERNATIONAL JOURNAL OF FATIGUE, 2000, 22 (03) : 205 - 215
  • [4] Life prediction for rolling contact fatigue crack initiation of kiln wheels
    B.S.Dhillon
    Engineering Sciences, 2010, 8 (04) : 58 - 64
  • [5] XFEM crack propagation under rolling contact fatigue
    Trolle, B.
    Baietto, M-C
    Gravouil, A.
    Mai, S. H.
    Nguyen-Tajan, T. M. L.
    FATIGUE DESIGN 2013, INTERNATIONAL CONFERENCE PROCEEDINGS, 2013, 66 : 775 - 782
  • [6] Crack Initiation and Propagation Behavior Around the Defect in Steel Under Rolling Contact Fatigue
    Fujimatsu, Takeshi
    Nakamizo, Toshifusa
    Nakasaki, Morihiko
    Tsunekage, Norimasa
    BEARING STEEL TECHNOLOGIES: 10TH VOLUME: ADVANCES IN STEEL TECHNOLOGIES FOR ROLLING BEARINGS, 2015, 1580 : 147 - 172
  • [7] Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel
    Taraf, M.
    Zahaf, E. H.
    Oussouaddi, O.
    Zeghloul, A.
    TRIBOLOGY INTERNATIONAL, 2010, 43 (03) : 585 - 593
  • [8] Corrosion fatigue crack initiation and crack propagation
    Dickson, JI
    ENVIRONMENTALLY INDUCED CRACKING OF METALS, PROCEEDINGS, 2000, : 3 - 5
  • [9] METHOD OF DETECTING ROLLING CONTACT CRACK INITIATION AND THE ESTABLISHMENT OF CRACK PROPAGATION CURVES.
    Shao Eryu
    Huang Xingyuan
    Wang Changsheng
    Zhu Yaomin
    Chen Qing
    1988, 31 (01): : 6 - 11
  • [10] Numerical Analysis of the Effect of Slip ratio on the Fatigue Crack Initiation Life in Rolling Contact
    Lee, Dong-Hyung
    Seo, Jung-Won
    Kwon, Seok-Jin
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 1791 - +