Commutators of BMO functions with spectral multiplier operators

被引:3
|
作者
The Anh Bui [1 ]
机构
[1] Univ Pedag, Dept Math, Ho Chi Minh City, Vietnam
关键词
spectral multiplier theorems; non-negative self-adjoint operator; heat semigroup; space of homogeneous type; THEOREM; SPACES; BOUNDS; NORMS;
D O I
10.2969/jmsj/06430885
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a non-negative self adjoint operator on L-2(X) where X is a space of homogeneous type. Assume that L generates an analytic semigroup e(-tL) whose kernel satisfies the standard Gaussian upper bounds. By the spectral theory, we can define the spectral multiplier operator F(L). In this article, we show that the commutator of a BMO function with F(L) is bounded on L-p(X) for 1 < p < infinity when F is a suitable function.
引用
收藏
页码:885 / 902
页数:18
相关论文
共 50 条
  • [1] Variational inequalities for the commutators of rough operators with BMO functions
    Chen, Yanping
    Ding, Yong
    Hong, Guixiang
    Liu, Honghai
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (11) : 2437 - 2460
  • [2] Variational inequalities for the commutators of rough operators with BMO functions
    Yanping Chen
    Yong Ding
    Guixiang Hong
    Honghai Liu
    [J]. Science China Mathematics, 2021, 64 (11) : 2437 - 2460
  • [3] Variational inequalities for the commutators of rough operators with BMO functions
    Yanping Chen
    Yong Ding
    Guixiang Hong
    Honghai Liu
    [J]. Science China Mathematics, 2021, 64 : 2437 - 2460
  • [4] Three Observations on Commutators of Singular Integral Operators with BMO Functions
    Perez, Carlos
    Rivera-Rios, Israel P.
    [J]. HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, BANACH SPACES, AND OPERATOR THEORY, VOL 2: CELEBRATING CORA SADOSKY'S LIFE, 2017, 5 : 287 - 304
  • [5] COMMUTATORS OF MULTIPLIER OPERATORS
    QIAN, T
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1985, 6 (04) : 401 - 408
  • [6] COMMUTATORS OF MULTIPLIER OPERATORS
    钱涛
    [J]. Chinese Annals of Mathematics, 1985, (04) : 401 - 408
  • [7] Continuity for maximal commutators of Bochner-Riesz operators with BMO functions
    Jiang, YS
    Tang, L
    Yang, DC
    [J]. ACTA MATHEMATICA SCIENTIA, 2001, 21 (03) : 339 - 349
  • [8] Commutators of BMO functions and degenerate Schrodinger operators with certain nonnegative potentials
    Liu, Yu
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 165 (01): : 41 - 56
  • [9] CONTINUITY FOR MAXIMAL COMMUTATORS OF BOCHNER-RIESZ OPERATORS WITH BMO FUNCTIONS
    江寅生
    唐林
    杨大春
    [J]. Acta Mathematica Scientia, 2001, (03) : 339 - 349
  • [10] COMMUTATORS OF HOMOGENEOUS MULTIPLIER OPERATORS
    QIAN, T
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (03): : 225 - 234