Generalized discriminant analysis via kernel exponential families

被引:0
|
作者
Ibanez, Isaias [1 ,2 ]
Forzani, Liliana [1 ,2 ]
Tomassi, Diego [3 ]
机构
[1] Univ Nacl Litoral, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
[3] Biofortis SAS, St Herblain, France
关键词
Discriminant analysis; Sufficient dimension reduction; Reproducing kernel Hilbert spaces; Support vector machine; SLICED INVERSE REGRESSION; SUPPORT VECTOR MACHINES; DIMENSION REDUCTION; COMPONENTS;
D O I
10.1016/j.patcog.2022.108933
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel supervised dimension reduction method for classification and regression problems using reproducing kernel Hilbert spaces. The proposed approach takes advantage of the mod-eling power of kernel exponential families to extract nonlinear summary statistics of the data that are sufficient to preserve information about the target response. For the special case of finite dimensional exponential family distributions, the proposed method is shown to simplify the known solutions for suf-ficient dimension reduction. A connection with support vector machines is shown and exploited to obtain efficient estimation procedures. Experiments with simulated and real data illustrate the potential of the proposed approach.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generalized Discriminant Analysis: A Matrix Exponential Approach
    Zhang, Taiping
    Fang, Bin
    Tang, Yuan Yan
    Shang, Zhaowei
    Xu, Bin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (01): : 186 - 197
  • [2] Generalized discriminant analysis using a kernel approach
    Baudat, G
    Anouar, FE
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2385 - 2404
  • [3] FREE EXPONENTIAL FAMILIES AS KERNEL FAMILIES
    Bryc, Wlodzimierz
    [J]. DEMONSTRATIO MATHEMATICA, 2009, 42 (03) : 657 - 672
  • [4] An Improved Kernel Exponential Discriminant Analysis for Fault Identification of Batch Process
    Wang, Ruixuan
    Wang, Jing
    Zhou, Jinglin
    Wu, Haiyan
    [J]. 2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 16 - 21
  • [5] Kernel generalized nonlinear discriminant analysis algorithm for pattern recognition
    Dai, G
    Qian, YM
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2697 - 2700
  • [6] Efficient kernel discriminant analysis via spectral regression
    Cai, Deng
    He, Xiaofei
    Han, Jiawei
    [J]. ICDM 2007: PROCEEDINGS OF THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 427 - 432
  • [7] Fast kernel Fisher discriminant analysis via approximating the kernel principal component analysis
    Wang, Jinghua
    Li, Qin
    You, Jane
    Zhao, Qijun
    [J]. NEUROCOMPUTING, 2011, 74 (17) : 3313 - 3322
  • [8] Text categorization via generalized discriminant analysis
    Li, Tao
    Zhu, Shenghuo
    Ogihara, Mitsunori
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2008, 44 (05) : 1684 - 1697
  • [9] Generalized variance and exponential families
    Hassairi, A
    [J]. ANNALS OF STATISTICS, 1999, 27 (01): : 374 - 385
  • [10] Linear discriminant analysis with generalized kernel constraint for robust image classification
    Li, Shuyi
    Zhang, Hengmin
    Ma, Ruijun
    Zhou, Jianhang
    Wen, Jie
    Zhang, Bob
    [J]. PATTERN RECOGNITION, 2023, 136